
Progress in Estimation and Control for Air-Launched Missiles:

Part I: A Real-Time 3D Mini-Max Pursuit-Evader Algorithm
Part II: Estimation

Final Technical Report
For the Period: 15 August 1992 through 31 October 1995

Contract Number: F49620-92-C-0056
AFOSR-TR-96

Prepared for:

Air Force Office of Scientific Research

Boiling Air Force Base, DC 20332

Prepared by:

Honeywell Technology Center

3660 Technology Drive

Minneapolis, MN 55418

December 1995

19960502 047
»Tic QTJALOT M8BSCISD 1

>\&A

DISCLAIME1 NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of Information is estimated to average 1 hour per response, Including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any

other aspect of this collection of information, Including suggestions for reducing this burden, lo Washington Headquarters Services, Directorate for Information

Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Wank) 2. REPORT DATE

12/27/95
3. REPORT TYPE AND DATES COVERED

Final Report, 8/92 to 10/95
4. TfTLE AND SUBTfTLE

Title: Progress in Estimation and Control for Air-Launched Missiles
Subtitle: I: A Real-Time 3D Mini-Max Pursuit-Evader Algorithm, II: Estimation

5. FUNDING NUMBERS

6. AUTHOR(S)

Mike Elgersma and Blaise Morton

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

Honeywell Technology Center
Honeywell Inc.
3660 Technology Drive
Minneapolis, Minnesota 55418

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONfTORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Office of Scientific Research
Boiling Air Force Base, DC 20332

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTAL NOTES

12A. DISTRIBUTION/AVAILABILITY STATEMENT

Unlimited
12b. DISTRIBUTION CODE

Unlimited

13. ABSTRACT (Maximum 200 words)

Part I of this report describes a real-time 3D mini-max pursuit-evader algorithm. The fast algorithm is possible due to
the assumption of constant speed, piecewise circular trajectories.

Part II of thisreport includes several papers on the interaction of estimation and control for missile guidance.

14. SUBJECT TERMS

Real-Time, 3D, Mini-Max, Pursuit-Evader, Estimation
15. NUMBER OF PAGES

120
16. PRICE CODE

17. SECURfTY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Preface

I would like to thank Jim Krause and Tom Ting from Honeywell for initiating this contract

and working the first two years of it. Progress for those first two years is documented in part

II of this final report.

I would like to thank Marc Jacobs at AFOSR for funding this three-year study on control and

estimation of air-launched missiles. I would also like to thank the Initiatives Committee at

Honeywell for funding a related study of missiles pursuing highly maneuverable aircraft.

Michael R. Elgersma

December 28, 1995

TABLE OF CONTENTS

SECTION PAGE

Part I: A Real-Time 3D Mini-Max Pursuit-Evader Algorithm

1. Introduction 5

2. Equations of Motion and Mini-Max Formulation 8

3. Intercept Surface for Vehicles on Constant-Speed 3D Circular Trajectories \

3.1 Introduction 11

3.2 Parameterization of the Intercept Surface 15

3.3 Components of the Intercept Surface 16 fr

3.4 Singularities on the Intercept Surface 27

3.5 Acceleration Constraints for the Pursuer 32 !

4. Iterative Algorithm for Computing the Intercept Surface 42
I

5. Algebraic Algorithm for Computing the Intercept Surface 48 f

6. Examples 57 <•.
f

7. Summary 70 L

Bibleography 71

Computer Listings 78

Figures: pp. 12, 18-20, 28, 33-36, 60-64, 66-69

Part II: Estimation

1. Assessing The Impact of Estimation Errors on Guidance Algorithm Performance

2. On Developing a Robust Missile Guidance Algorithm

3. Fault Detection in the Presence of Modeling Uncertainty

4. Final Report for THAAD/IAP Support

1. Introduction

Many studies have been done on various forms of mini-max pursuit-evader games for missiles

and aircraft. These types of algorithms typically give performance that is superior to simpler

missile guidance algorithms such as proportional, navigation or linear control techniques. The

bibleography gives titles and abstracts of nine papers about mini-max pursuit-evader algo-

rithms, as well as one paper on a nonlinear regulator algorithm that could be useful for mis-

sile guidance.

The 3D mini-max pursuit-evader algorithms typically run far too slow for real-time implemen-

tations, so they are restricted to simulation use. Since they are run off-line, they can include

highly detailed dynamics and constraints, at the expense of run-time.

In this report, we derive a 3D mini-max pursuit-evader algorithm that takes between 250,000

and 2 million floating point operations to update. This guidance algorithm could be updated

at around 1 Hz on a rather slow 1 Mflop computer. In order to get this performance, we had

to assume that both vehicles moved at (different) piece-wise constant speeds, along piece-wise

circular 3D trajectories. This leaves four piece-wise constant control inputs: the two normal

accelerations of each of the vehicles. Conventional mini-max algorithms would have to

search through a four-dimensional control space to find the optimal trajectories.

With the assumptions of constant speeds and constant accelerations, we have derived the

implicit equations determining the two-dimensional surface in 3D on which all possible inter-

cepts occur. The two-dimensional intercept surface typically encloses the slower aircraft,

allowing it no escape. Fuel and acceleration constraints on the missile leave openings in the

two-dimensional intercept surface through which the evading aircraft can escape. Our gui-

dance algorithm gets its speed by using either a closed-form solution (2 million floating point

operations) or an iterative solution (250,000 floating point operations) for all points on a

5

30 x 60 grid on the two-dimensional surface of all possible intercept points in 3D space.

At each update (e.g. 2 Hz), the algorithm inputs the current velocity of both vehicles and the

relative position between them. From this information, the missile computes what accelera-

tion input it needs to rninimize the miss distance for each possible aircraft acceleration input.

This results in a 2-dimensional intercept surface, parameterized by the aircraft's 2-dimensional

acceleration input. On this surface, the aircraft computes some cost functional (e.g. some

combination of intercept time, max missile acceleration, etc.) that it wants to maximize and

choses the corresponding aircTaft acceleration input. Then the missile computes the accelera-

tion required for the missile to get to that point on the intercept surface.

Given the circular trajectory from the missile's initial position to the desired end-point, with

the missile's initial velocity tangent to the circle, there is no other trajectory that simultane-

ously has less maximum-acceleration and less flight time. We ignore paths of longer length

which can have smaller curvature. By using the smallest reasonable intercept acceleration

(circular paths), the missile avoids its own acceleration limits, and is less prone to hit its

angular rate limits chasing a wildly maneuvering aircraft.

A disadvantage of the proposed algorithm (compared to proportional nav) is that it requires

measurements of the velocity of both vehicles, and range. Since this information is seldom

available from sensors on a small missile, the missile may have to rely on getting these infor-

mation updates from the aircraft that launched the missile. Alternatively, the algorithm could

be used only to display the intercept surface to the pursuing aircraft to let the pilot know

when to launch a missile. Another alternative is to use the algorithm on the evading aircraft

to let it know what point on (or hole in) the intercept surface it should head toward to best

avoid a missile that has been launched at it.

Included near the end of this report are some examples that were run on a 120 MHz Pentium.

6

7

The guidance algorithm itself ran at approximately 80 Hz. The color figures (see figures 10

through 18) are snapshots of the moving graphics done using OpenGL which Microsoft has

licensed from Silicon Graphics for the Windows NT operating system.

2. Equations of Motion and Mini-Max Formulation

Let vehicle 1 be the evader, and vehicle 2 be the pursuer.

Let r^t) € R3 be the position of vehicle i.

Let Vj(t) e R3 be the velocity of vehicle i.

Let mi be the mass of vehicle i.

Let Uj e U; c R2 be the two perpendicular forces on vehicle i.

Let Vj-Kt) be the orthonormal (orthogonal) complement of Wt).

The constant speed, point-mass equations of motion, in inertial coordinates, are given by:

miYi(t) = VJ-(t)Ui

rj(t) = Wt) 1=1,2
(1)

with initial conditions:

wo) 5(0) i=l,2 (2)

!

We are considering mini-max formulations of the following -type for determining the optimal

control inputs Uj = Uj*. The pursuer tries to minimize the miss distance, while the evader tries

to nainimize some cost functional J.

rr*(üi). Ü2*(Si)] = min_args
min

0<t<Tmax Ib2(t)-rj(t)||

u^e U2cR2

miss distance (3)

Hi =arg ujeU^R2[J[T*(iil)' ^*(Hl)' Ii^^i»' l20*(ui))] ,

U2 = Uj (U2)

cost index (4)

(5)

The mini-max computation is updated as fast as the guidance computer can calculate it, using

the current state, jj(t), Vj(t) as the new initial conditions.

8

If the mini-max algorithm is only evaluated once, both vehicles will have constant control

inputs, and will fly along circular trajectories. Each time the mini-max algorithm is updated,

each vehicle recomputes the optimal value of its control inputs. This results in each vehicle's

trajectory consisting of smoothly connected circular segments.

For some initial conditions £(0), V^O), large enough values of Tmax, and large enough

control-input sets V-v the vehicles intercept (zero miss distance) for any value of

Uj e Uj c R2, i.e.:

mm
0^t<Tmax IfoCO-rjCOH

► 2

= 0 (6)
U26U2cR"

In this case, T*^) is the intercept time, and rjCT*^)) = rzCT*^)) is the intercept point If

more than one intercept occurs, T^Uj) is the smallest of those intercept times. The function

Il(T*(Hi)) maPs *e 2-dimensional control space Uj into R3, giving the 2-dimensional inter-

cept surface in 3-dimensional space.

Examples of the evader's cost functional J could be:

J = T^uj) maximize intercept time, depleting pursuer's fuel

J = Hu^Ui)!! maximize pursuer acceleration, putting pursuer on acceleration limits (7)

J = ||r2(T*(u1)) - r1(T*(u1))|| maximize miss distance (if non-zero)

Circular Paths have Minimum Max-Acceleration

Given the unique circular trajectory from the missile's initial position to the desired end-point,

with the missile's initial velocity tangent to the circle, there is no other trajectory that simul-

taneously has less maximum-acceleration and less flight time. We ignore paths of longer

length which can have smaller curvature. By using the smallest reasonable intercept accelera-

tion (circular paths), the missile avoids its own acceleration limits, and is less prone to hit its

angular rate limits chasing a wildly maneuvering aircraft.

For a proof that min-length paths with a local curvature bound consist of a circular segment

and a straight segment, see [Dubins] whose work was also sponsored by AFOSR.

i
I

10

3. Intercept Surface for Vehicles on Constant-Speed 3D Circular Trajectories

3.1 Introduction

If speed and acceleration are allowed to vary within some bounded region, the associated

mini-max evader-pursuer problem is computationally expensive and unlikely to be solved in

real-time by today's computers. By assuming constant speed and any allowed constant nor-

mal acceleration, the problem becomes tractable. In later sections, we will partially alleviate

the restrictions of constant speed and constant normal acceleration, by recomputing the current

optimum "constant" accelerations using the current positions and speeds, as the trajectories

evolve.

In this section, we will derive the equations that define the intercept surface for two vehicles

on constant-speed circular trajectories. In the next two sections we will give algorithms for

solving the resulting set of implicit equations.

Assume the evader (aircraft) has initial location jj(0) and initial velocity V^O). Assume the

pursuer (missile) has initial location £2(0) and initial velocity ^(O).

If both vehicles maintain constant speed and constant normal acceleration, they both will

remain on circular paths in 3D space. The set of constant-speed circular trajectories through

the point jj(0), with initial velocity Vj(0) is 2-dimensional, and could be parameterized by the

two components of normal acceleration. Similarly, the set of constant-speed circular trajec-

tories through the point £2(0), with initial velocity ^(O) is 2-dimensional, and could be

parameterized by the two components of normal acceleration. The constraint that the circles

for vehiclej and vehicle2 intersect reduces the 4-dimensional set to a 3-dimensional set. The

constraint that vehiclej and vehicle^ arrive at the intersection point at the same time, reduces

the intercept surface to a 2-dimensional set. Figure 1 shows typical intercepts.

11

Ä
es

PN

u

"3 u

"0
WD
S
o

w
*J
O. a
w
u

a>
S3
wo

This two-dimensional surface separates 3D space into regions that the aircraft can get to first,

and regions that the missile can get to first. If the missile is capable of catching the aircraft,

then the regions that the aircraft can get to first include a bounded region in front of the air-

craft that shrinks to a point as the missile approaches intercept.

To solve for the locations r in R3 where the vehicles can intercept, we will compute the time

it takes vehicle! and vehicle to get to point r via circular paths from T±(0) and £2(0).

We will define two sets of polar coordinates, based at the points jj(0) and ^(0).

r = r1(0) + r1

= r2(0) + r2

Yi(0)

11^(0)11
, Vi«)/

Vo(0) 22

IIVoCO)!!
, Y2(0)x

COSOl!)

sinfli^cosCCi)
sin(Ti1)sin(Ci)

cos(ri2)
sin(Tj2)cos(C2)
sin(Ti2)sin(C2)

(8)

where

-, Vi(0)x

IIYi(0)||
e SO(3) i = 1, 2 (9)

ri = Ife-rj (0)|| r2 = 1(1-12(0)11

TJi = COS l
V!(0).(r-rj(0))

HXiC0)ll ri

rj2 = cos l
V2(0).(r-r2(0))

11X2(0)11 r2

From equation 8, we also see that r^ is the angle between V^O) and r - ^(0), which is half

the angle through which vehicle; has turned while on the circular trajectory from ij(0) to r.

13

Let Tj be the time it takes for vehiclej to travel along the circular trajectory from jj(0) to r.

The circular distance that vehicle; travels is ||Vj(0)|| Tj. The straight-line chord distance from

r;(0) to r is r;. The ratio of circumferencial distance to chord distance is —: where Tk is J ~ sinOli)

the half-angle. This gives us formulas for computing the arrival times as functions of ^ and

-_lL_ T]l
Tl " l|Yi(0>|| sin^) (10)

r
2 ^2

T2= IIV2(0)|| sin(Ti2) (11)

The intercept surface is then obtained by solving for all r that satisfy the equation: T: = T2,

i.e.

ri = HVi(0)ll T]2 sin(Tii)

r2 ||V2(0)|| anCtia) Tli ' (1 }

Equation 12 is a single equation in the three variables: (ri/r2,TJi,T|2)- Equations 8 and 12 give

four scalar equations on the six variables (rj/ni.Ci)« anc* (r22\2&a)- I*1 either case there are

two more variables than equations, so we get a two-dimensional solution set.

If we let:

l|Vi(0)ll % rin(Hi)
11X2(0)11 sin(Ti2) ti! (}

then equation 12 can be written as 0 = F(r) where:

F(r) = fl - k r2 (14)

14

3.2 Parameterization of the Intercept Surface

The data that describes the intercept surface can be represented as two vectors in a homogene-

ous space:

dataj =
Vi(0)
S(O)

1
i=l,2 (15)

If we apply a Euclidean transformation that translates the origin to £2(0), rotates the ^(0)

vector to the x axis, and rotates about this new x axis until the rj(0) - £2(0) vector has no z

component, then the data becomes:

R 03x3 ^3x1

03,3 RT -RTr2(0)

0lx3 0lx3 1

RTV!(0)
r12cos(los)
r12sin(los)

0
1

for i=l and

dataj

V2
0
0
0
0
0
1

(16)

for i=2

where los is the angle between the unit vector j_V2 in the ^(0) direction and the 1^ unit vec-

tor in the ij(0) - £2(0) direction.

COS(IOS) = 1_V2 • Ln (17>

and

R = IV2'
1V2 x (lv2 X &(0) - £2(0))) - lv2 X ft(0) - £2(0))

(18)

If we also uniformly scale distance by r12 and then scale time by V2, we are left with a 4-

15

dimensional data set:

«ktV**,

(1/V2)RT 03x3 03xl

03X3 (l/r12)R
T -d/r12)RTr2(0)

0 1x3 '1x3

(Vi/V2)lV]

cos(los)
sin(los)

0
1

for i=l and

dataj

for i=2

(19)

If we consider some additional condition on the shape of the intercept surface (such as when

two surface components are disjoint) we can express this condition using the inequality:

VifV2 ^ HQvi» l°s) f°r some function H (20)

In the next section, we obtain a simple expression for when the surface components are dis-

joint, by finding another function, H(los), which satisfies the inequality:

H(!vi, los) < H(los) for all l^vi

We can then ensure disjoint surface components whenever:

V,A^2 ^ H(los)

(21)

(22)

To show the tightness of the bound, we also determine the value of £Vi> that makes the above

inequality become an equality.

3.3 Components of the Intercept Surface

The two points jj(0) and £2(0) are both on the intercept surface.

The scalar function F(r), whose zero set is the intercept surface, is continuous everywhere

except at the the two points ij(0) and £2(0).

16

We will determine conditions on the data that ensure that the solution component that includes

the point r^O) is disjoint from the solution component that contains the point £2(0).

Figures 2, 3, and 4 show cases where the components are separate, touching, and merged.

17

Figure 2: Intercept Surface With Two Separated Components

x2-x1=(0.10 3.00 -2.00), V1=(1.144 0.100 0.100), V2=(0.100 2.000 3.000)
 1 1 1 1 •—>—r~n

CJ

CO

II

>

-1

-2

-3
-3

:

• j» . • ••• •

• •^ » • • • * •

-2-1 0 1 2
halfcone(etal) halfcone(eta2) ellipsoid(eta1 ,eta2) 0<eta1<pi 0<eta2<pi

Figure 3: Intercept Surface With Two Touching Components

x2-x1=(0.10 3.00 -2.00), V1=(1.147 0.100 0.100), V2=(0.100 2.000 3.000)

-3
-3 -2-1 0 1 2

halfcone(etal) ha!fcone(eta2) ellipsoid(eta1 ,eta2) 0<eta1<pi 0<eta2<pi

Figure 4: Intercept Surface With Merged Components

x2-x1=(0.10 3.00 -2.00), V1=(1.150 0.100 0.100), V2=(0.100 2.000 3.000)

-2-1 0 1 2
halfcone(eta1) halfcone(eta2) ellipsoid(eta1 ,eta2) 0<eta1<pi 0<eta2<pi

The point ij(0) has r2 = 0, so for all 0 < T]^ < JC, it is contained in the solid ellipsoid:

IIYi(0)ll ^
'l* l|V2(0)|| sinOi^)

(23)

For all 0 £ T|o £ it, the point £2(0) is at the vertex of, and therefore is contained in, the

solid half-cone:

^^ (24)

Theorem 1: For any fixed 0 < H^ - 7U» ^ intercept surface is contained in the union of

the solid ellipsoid and the solid cone described above.

To ensure that the solid half-cone Tj2 £ T^^ does not intersect the solid ellipsoid, we must

restrict the line-of-sight (los) angle between the cone axis, ^(O), and the ellipsoid axis,

£2(0)-H(0).

Define the line-of-sight angle:

— r»r\c *■ los = cos
Va«)) T (ri(0)- ^(0)3

l|V2(0)|| IITJCO)- 12(0)11
(25)

Theorem 2: If 0 < vl/v2 and 0 < los < JC satisfy:

HXi(0)|| < max

11X2(0)11 0<1OS<TI2MIä<^

sin(Tl2.,)

sin^^
- »n(Tio ~ los)

TI2

V 1 +
^ tanCTi^)

(26)

21

where

^2^ = (n - sin_I(vl/v2) + los)/2 (27)

then the following equation has a solution with 0 < los < Tj^ < ^

HVi(0)ll sinft^
 = sinfTb - los) (28)
IIY2(0)|| Tl2_

U2-

For for the largest such TJ^ solution, the solid ellipsoid and solid half-cone kiss. For values

of TJ^ Just smaller than that solution, the solid ellipsoid and solid half-cone are disjoint, so

the solution components that contain the points jj(0) and r^O) are disjoint.

Conjecture: When the two solution components just touch, the max intercept time on the

component that encloses the slower vehicle, occurs at the touch point.

= *i ||V2(0)|| Sin(Tl2) Tl]

l|Vi(0)|| T|2

Är'-OT^ """" (29)

II Vi (0)|| Tl2cora,
> r = r for 0 < Tio < TIT <I Jt i.e. outside the solid half-cone 1 ||V2(0)|| anflh.J 2 '2 I2OT

«

> 0 outside the solid ellipsoid

So the region of space that is exterior to both the solid half-cone and the solid ellipsoid has

22

Proof of Theorem 1: On the intercept surface, F(r) = 0, yet in the region of space that is
T

exterior to both the half-cone and the ellipsoid we have: |

F(r) = ri - k r2 ^

IIY^O)!! T]2 sinCTij)

Tj > T2 so cannot contain points on the intercept surface (where Tj = T2).

For any point along the ray r^ = 0 that is both inside the solid ellipsoid and inside the solid

half-cone, the inequalities in the above proof are reversed and Tx < T2.

Proof of Theorem 2: As f\2CM varies, the point where the solid half-cone and the solid ellip-

soid first touch is contained in the plane that contains the cone axis, V2(0) and the ellipsoid

axis, £2(0) -rj(0). In this plane, the cone becomes two rays based at £2(0). The angles

between these rays and the cone axis are ±n2C0Mt- Let r be a vector along the ray with angle

+rjo . This ray can intersect the planar ellipse at up to two points. When the two solutions

coalesce, the cone and ellipse are tangent to each other.

The law of cosines applied to the triangle with vertices rj(0), £2(0), and r can be written as:

rj2 = r2
2 + r12

2 - 2 r2 r12 cos(T|2 - los) (30)

The boundary of the solid ellipsoid is given by:

HVi(0)ll Tfa-,
r = r9 (31)

1 Uy^O)!! SU1CT12.J 2

Eliminating T1 in the above two equations gives:

r22 + ri22 - 2 r2 ri2 cosft^ _ los) (32> 0
_ rllXi(0)ll ^ :

||V2(0)|| sin(Ti2_)

This quadratic equation has two solutions that give the normalized distance r2 along the cone

ray.

This quadratic equation has roots:

23

'12

V COS(Tl2BM, ~ los) ± \/ COS^Tl^ - los) - (1 - [
IIYl(0)ll ^
||V2(0)|| sinOi^

■?)

(l-[
1IYI(Q)I1 ^
11X2(0)11 sin(Ti2_)

]2)

(33)

The two roots coalesce when

cos(Tl2OT« ~ los) = ± \ / (1 - [±Y
llXi(Q)H ^
11X2(0)11 sin(n2oMt)

]2) (34)

or

I ■ r , M »Xl(0)ll ^ lsin(rb - los) I = „„ ^N„ . , solve for Tb
12«, 1^(0)11 sin(n2c<J

,2OT
«

(35)

or

HXi(0)H = «"(Tip

IIY2(0)|| Tl2_
lsin^2OTt-

los)1 (36)

HXi(°)ll
To obtain the largest value of inT //vill for which solutions to equation 36 exist, note that

11X2(0)11

(.99-sin(i^))*J24<(Mos^<JC

sin ftO
*2coo«

S^1!^ " l0S) < (1.03 - sin(los/2))*.724

and the maximum occurs at the value of Th^ given by:

sin^T]^ - los) = vl/v2 2 branches for sin-1 (38)

We need T]^ in the range 0 < los < T]?^* < t so we choose the branch with the largest

value of T|2UMI, e.g.

r^ = (jc-asin(vl/v2)+los)/2 (39)

24

The above bounds imply that:

equation 36 has a solution if
HYi(Q)ll
IIY2(0)||

< .724*(.99 - sin(los/2)) (40)

while

equation 36 has no solution if
llYi(0)ll
HV2(0)||

£ .724*(1.03 - sinGos/2)) (41)

After solving equation 36 for Tj2cooit, the location of the point where the solid ellipsoid and the

solid half-cone just touch can be determined by:

1
*12 cos(rj2 - los)

(42)

ri2
= tan(ri2c£M - los) (43)

Examples:

For fixed values of los, we can plot equation 36 to find the value of T]^ > los that gives the

IIV^O)!!
largest value of

l|V2(0)||

los = 1.57 rad = 90 deg gives mm IIY2(0)||
4.60 at 712^=2.25 (44)

los = 1.00 rad = 57 deg gives ™n ||^!L = 2.56 at ^=1.87 (45)

25

Tight Bound

The inequality in theorem 2 becomes an equality when

Vi/V2 =
max

0<Ti2a30it<los<7ü
sin(Tl2„

sm(Tio - los) = .742 (1 - sin(los/2)) (46)

which occurs at

rj^ =(K- sin_1(vl/v2) + los)/2 (47)

The inequalities in theorem 1 become equalities when T^ = 0 and TJ2 = T|2conit (solution of

equation in theorem 2). This implies that the triangle with sides of length rlf r2, and r12 is a

right triangle, since:

Xi(0) T^ rj
.in^-lo.)-—^--k«- when ^ = 0, ^ = ^(48)

To orient the Vj(0) vector in the direction that results in r^ = 0 at the point where the cone

and ellipsoid meet, we need:

1) Vj(0) must be in the plane spanned by the cone axis, V^O), and the ellipsoid axis,

rz(0)-rj(0).

2) VJXO) must be perpendicular to the ellipsoid axis, £2(0) - jj(0).

This can be done by pointing V^O) along the direction:

feCO)-!!«))) x [(iv,(0)-rj(0)) x V^O)] (49)

26

3.4 Singularities on the Intercept Surface

The two points ij(0) and £2(0) are both on the intercept surface.

The function F(r) that defines the intercept surface is continuous everywhere except at the the

two points ij(0) and £2(0).

To determine if the intercept surface has any other singularities, we can examine the gradient

of the function F(r) to see if it is bounded away from zero. Figure 5 shows a case where the

intercept surface has a singularity.

The following notation is useful in deriving the gradient of F:

r-ü(O)
1T = =——— i = 1,2 unit vectors (50)

(r-*(())) x(r-rj(0))x WO)
h; = ^ -' —^ -* -1 i=l,2 (51)
-1 IKr-r^x^-r^xWO)!!

Note that for each i, lj. and hj are unit vectors and are orthogonal to each other, so we can

define the following rotation matrices:

Q = ih, hi, ^ x hj i=l,2 (52)

27

V)

c
o

•4—< c
CD c
o
E
o
o
c
o

o
co
CD
"co
CO
Q.
CD
CO
CO
CD

V-«
CO
CO

•»—'
CO

CO

>
X
co
E

CD

d

>->

>
£ • 1-H

T3
o
& |

o o ■*->

«♦5

u
•c o
bO

"7i
Ö o KS

CJ 4-> U u ta >
• F-l <u »H tr! w—l o C3

OH tH »H

i • 1-H

X * *
<u

ID

OJ

c

in

I

in-

o-

O r

((z/so|)uis - go* I) PZL' > ZNl* > (te/so|)uis - 66') VZL

The normal to the surface is given by the gradient of the function that defines the surface.

dF _ <fri , dr2 dk
dr ~ dr dr dr *2

= ir1-klJ-
r2

dk
dr

(53)

To evaluate -—, recall that
dr

IIVjCOH sinCTii) ri2

11X2(0)11 Til sin(Ti2)
(54)

d sin^t) sin^t) i 1

dTli Tli Tl! Tli tanOii) ■)
(55)

d _(_
Tl2 Tl2 1

) = (-rfr) (-f- -
1

dT]2 sin(Ti2) sin(Ti2) Tj2 tan(Tj2)
-)

Combining the above 3 equations gives:

HVj^ll sinflh) 7\2 dk
dr 11X2(0)11 Tl! sin(Ti2) <i 1 dTli

(56)

tan^j) dr -(4-- 1 dT]2

TJ2 tan(T|2) dr

= -k
1 dT|

)- Tl! tanOlj) dr <i 1 ,dTl2
tan(T|2) dr

(57)

The angle from the vector XJ(0) and r - jj(0) is T^, so
dr

is a vector of length 1/r;, perpen-

dicular to r - rj(0), in the plane spanned by Xi(°) and r - £(0). The unit vector hj, defined

above, is in the appropriate direction, so

d^li 1 ,
 = h:
dr r; -

1 (58)

29

Combining the above equations [and noting that — = k when F(r) = 0] gives:
r2

dF
dr lr + (- ■) hi -" VT11 tanCTi!)'-1 - k L + (- -) ho

-* Vri2 tändle'-2

1

tan(Th)
0

-kCo

1

Tl2

1
tan(Ti2)
0

Applying the triangle inequality to the above equation, we get:

#||> Ji + (J--—L^- Ikl-Ji + (^ ^
dr" V ill tan(7i!) \ r|2 tan(Ti2)

_ fll¥i(P)ll %
L 11X2(0)11 sin(Ti2) k l + (

T T
Tj2 tan(Ti2)

f

(59)

(60)

The gradient cannot be zero in regions of space where X[2 satisfies:

"H2 11Y2(Q)11
HV^O)!! > sin(Ti2) V l + (

T
r\2 tan(Ti2)

)2 (61)

This represents a half-cone region in front of the missile, up to an angle of rj2 from the velo-

city vector Y2(0). This means that the intercept surface cannot have any singularities in that

region of space, except at the point r = ij(0) where the function itself is discontinuous. The

function is also discontinuous at the point r = ^(O), but that point is outside the T|2 bound

given above.

For example, if
IIY2(0)||

IIYiCO)«

Tl2< 1.97rad= 112deg.

= 3 then the gradient cannot be zero in regions where

30

All possible singular points:

In an earlier section, we showed that the 12-dimensional set of data: £(0), £2(0), VjCO), V^O)

could be reduced to a 4-dimensional set by modeling out by the 6-dimensional Euclidean

group of motions, scaling distance, and scaling time. For each point in the remaining 4-

dimensional data set, we get a 2-dimensional solution set for r e R3. The vector equation,

dF/dr = 0, is equivalent to 3 scalar equations, which give fixed points on the 2-dimensional

solution set, and put a single condition on the 4-dimensional data set. Therefore, there is a

3-dimensional set of degenerate data, that results in the solution surface having a singular

point. This 3-dimensional set of degenerate data can be parameterized by the following rota-

tion matrix:

C =
Cll C12

c13

C21 C22 C23

C31 C32 C33

= C!T Qz e SO(3) (62)

The solution set is singular when

0 =
dF
dr

(63)

i.e.,

1
1 J

T\i tan(Th)
0

= k (C/ C2)

1
1 J

ri2 tan(ri2)
0

1
We can solve these three equations for k, —

1

Tli tan(Th)
and

1 1
Ti2 tan(T|2)

(64)

1 1 ~°3l
Ti! tan^j) c32

(65)

31

1 1 -Cl3

TI2 tan(Ti2) c13

•V1+(i-^)2 V
k=———-±———f—- = , (67)

c13 o
1 + (—)2

C23

The above three equations can then be used to solve for T^, TI2, and ||Vx C0)||/HV^CO^H as func-

tions of C. These values of Tjj and T|2, give a point on the 2-dimensional solution set. The

4-dimensional data set was parameterized by IIVjCOWIIV^O)!!, los-angle, and _lVi
e S2.

3.5 Acceleration Constraints for the Pursuer

In this subsection, we will look at two things. First we will derive a bound of the form:

vl/v2 < function(los,accel_limit) (68)

that guarantees that the pursuer will not violate its acceleration constraint anywhere on the

selected component of the intercept surface. Second, we will derive a set of nonlinear equa-

tions whose solution gives initial conditions and a point on the intercept surface where the

pursuer's acceleration constraint is just reached. Figures 6-9 show acceleration constraints on

the intercept surface.

32

Figure 6: Acceleration Limits On Pursuing Missile

max v1/v2 to guarantee: (Solid) Separate sol components. (Dotted) accel2 < [0.79,1.00,1.39]
1

0.9

n

c
'5
w
3

CL

i

l 1
*1 I
X H^

1

T H|
^Bffli
^HU

1 Kg
: E3
I P £ Kfj z ^^E3 ■ ^■H

i * KB
o 5 W^r W 03 t ■

j W r J O < Ed
1 15 Kri W :ri5&-\ ■■ ■ ■■"-?Vl-y Bui

s, •- en 1
—
'35

5 c

1 3 / c
o

c
O

'Öl
""I £ E

CT Ol «- 0) HHt
i C

'5
If)

- 0) 1
3 *

03
> H 3

3 J « s c = ■3
» 0- 03 c Q. 2 .5 a) Kj3

I <W
3 53.E

1
^^^*- "53 "o

U Ü)
o "O
< 03

0) o
X

U 0> ■S ~ U "O Hi

i
z

< Ü3
03
U
X

ÜJ I
■* l±J K5

1
E

HPJ

M |

«! to.

3

2 01

UJ B > m

To determine the bound vl/v2 < function(los,accei_limit), we start with the equation that

defines the intercept surface:

sinOii) sin(Ti2)
vl/v2 = (rl/r2)-

Tli Tl2
(69)

and the equation that defines the surface of constant acceleration for the pursuer, vehicle 2

2HV2(0)||2 sin(Ti2)
HY2(0)|| = — ~ (70)

In equation 69, we can rewrite rl as:

ri = ll(r-r1(0))H

= ll(ri(0)-r2(0))-(r-r2(0))||

= llfc<P) - SCO)) - [lv2, lvrL] r2 1^11

= Il[lv2. l^f (£i(0) -S(P)) - r2 JLn^cJI

11*12
cos(los)
sin(los)

. 0 .
"r2

COS(TJ2)

sin(Ti2)cos(C2)
sin(Tj2)sin(C2)

Putting this expression for r: into equation 69 gives:

sin^t)

Til
vl/v2 = ||(r12/r2)

cos(los)
sin(los)

. 0 .

cos(T[2)
sin(rj2)cos(C2)
sin(Ti2)sin(C2)

sin(Ti2)

Tl2

Solving equation 70 for r2 and putting that into equation 72 gives:

sinOlj)

Til
vl/v2 =

11X2(0)11

WYl, r=r,(0), Tii=7t/2ll

cos(los)
sin(los)

. 0 .
- sin(Ti2)

COS(T|2)

sin(Ti2)cos(C2)
sin(T(2)sin(C2)

where

J_
Tl2

(71)

(72)

(73)

37

11^2, r=r,(0), Ti2=iü2ll ~
2iiy2(Q)ii2

r12

The right-hand side of equation 73 is minimized when £2
= 0- If we consider examples

where the V^O) vector is rotated till Td = 0 at the point where the intercept surface and the

acceleration constraint surface just touch, we get:

min „ 11X2(0)11 rcosOos)] . (<n ,
>^^--o5SJ^-S

COS(T|2)

sin(ri2)
J_
T\2

(75)

Actually, the min should be taken over the restricted interval:

min
0<rj2<(3 los + JC)/4

to ensure that we are finding the intersection of the constant accel2 surface with the com-

ponent of the intercept surface that contains ij(0).

Equation 75 gives the value of vl/v2 that corresponds to the intercept surface just touching

the accel constraint surface. Larger values of vl/v2 could result in either larger or smaller

values of max acceleration. To eliminate cases where smaller values of vl/v2 result in larger

accelerations, we can set

vv *' v^accel<constraint

0 whenever sinCn^^) >
IY2II

2iiy2(0)ii2

r12

(vl/v2)touch whenever sin^^) < j
IIV2II

2||V2(0)||2

r12

(76)

38

Examples where acceleration constraint is just met

Constraining a vehicle to a fixed acceleration magnitude, means that it will be on a fixed

radius circular path (tangent to its velocity vector). The set of all such circular paths forms a

2-dimensional surface. The fixed value of acceleration that just causes this surface to touch

the intercept surface is the max acceleration on the intercept surface. To solve for the inter-

section point of these two tangential surfaces, we must set the gradient of the constant

acceleration surface, equal to a constant times the gradient of the intercept surface. The mag-

nitude of the acceleration on the two surfaces must also be set equal. This gives 3 equations

to solve for the magnitude of the acceleration and the point on the two-dimensional intercept

surface where that acceleration occurs.

The acceleration of vehicle i is given by:

accel; = [L, hj]
sinOli)
cosCrii)

2||Vi(0)||2 sinCTii)
(77)

so the magnitude of the acceleration is constant on the 2-dim surface defined by the function:

2||Vi(0)||2 sind;)
llacceljH = (78)

For fixed values of HacceljH, the gradient of this function is:

d
dr

2||Vi(0)||2 sinOli)
= Ux, hi!

-sinCHi)
cosOij)

2||Vi(0)||:

= C:
-sinOli)
cos(Tii)

0

2||Vi(0)||2

(79)

dllaccel?]! dp , , ,
Setting a scalar times equal to —— gives three equations for that scalar and the

dr dr

touch point on the 2-dimensional intercept surface:

39

or

C2 COS(TI2)

0
= C,

J_
Hi

1
tanCtij)
0

Til tanOli)
0

= (C^Cj)
J_
T\2

C2

1

Tl2

1
tan(Ti2)
0

1 -sin(Ti2)

1
tan(Ti2)

0

cos(Ti2)

0

(80)

(81)

Solving for
1

Since

1
Til tan(Tl!)

, k, and a,, gives:

1 1 -C13

Tij tan^) C23

T\2

sin(Ti2)

COS(Tl2)

1

T\2 tan(Ti2)

sin(Ti2)

] 1

cll c21

c12 c22

T\2

sin(Ti2)

COS(Tl2)

1 1
T)2 tan(ri2)

sinOlj)

] 1

J_
Til tan(Ti!)

en - -c21
Cl3

c23

c12- - c22
Cl3

c23_

k =
IIV^O)!! sindij) T]2

||V2(0)|| Th sin(Ti2)

we can combine equation 85 with the top half of equation 83 (for k) to get:

(82)

(83)

(85)

40

IIVjCO)!! sinfti)

l|Y2(0)|| Tl!
= [COS(TI2), sin(T]2)]

en - C21

c12 ~ c22

'13
c23

Cl3
c23

(86)

In the next two sections, we will present both iterative and closed-form techniques for calcu-

lating points on the two-dimensional surface defined by the scalar equation F(r) = 0.

41

4. Iterative Algorithm for Computing the Intercept Surface

This section defines an iterative algorithm for computing the radius, rj, along each fixed unit

vector, i^j^j, such that the vector r = ij(0) + rj L^,^ is on the intercept surface.

From equations 8 and 9,

r^lt-üCO)!! r2 = |(r- fi(0)|| (87)

Using the law of cosines on the triangle with vertices ij(0), £2(0) and r, we can write r2 as a

function of rlt Tjj, ^:

r2
2 = rj2 - 2 cos(())) r: ||rj(0) - ü(0)|| + 1(^(0) - ^(O)!!2 (88)

where <{> is the angle between the vectors ij(0) -£2(0) and r - rj(O). This angle is fixed dur-

ing the iteration, since the unit vector along r-ij(0) is only a function of T^ and C,x.

From equation 8, we also see that TI2 is the angle between ^(0) and r - ^(0), so T|2 can

written as a function of r^ %, ^:

rV2(0).(r-r2(0))
TI2 = cos 1

HV2(0)||||r-t2(0)||

where

r-r2(0) = [rJ(0)-r2(0)]+r1
Vi(0)

IIV^O)!!
, Y^O)-1

cosOii)
sin(Ti1)cos(Ci)
sinCTi^sinCCi)

(89)

(90)

Given fixed values for (Th.^), and an initial value for rlt we can use equations 87-90 to

evaluate r2 and r\2, and use equation 12 to evaluate the new value of r^ This gives an itera-

tion for rj.

42

If we use Tij and £i as coordinates on the two-dimensional intercept surface, we can use the

iteration defined above to solve for the corresponding values of r^ Then equation 8 gives the

Cartesian coordinates of the point.

When TJ! = 7t, equation 12 is satisfied by rj = 0. This point is on the intercept surface

because the evading aircraft could fly on any circle just large enough so that the aircraft

returns to its starting point in the time it takes the missile to get to the aircraft's starting point

In the iterative procedure, we will make use of the following formula for r\2 in terms of los

and y:

Y2(0)T

r2COS(7l2)=ii^)ii[I~l2(0)]

Y2(0)T Y2(0)T (91)
-* fcCO) - SCO)] + -j^-^r [r - rj(0)]
||V2(0)|| l-JV -^ liV2(0)||

= r12 cos(los) + r: cos(y)

To determine a two-dimensional array of points rjCrji.,^.) on the intercept surface and evalu-

ate the cost functional at each point, we can use the following procedure (given in more detail

later):

43

kO = (vl/v2)*sin(etal)/etal

cos_los = - x2_minus_xl_unit dot V2_unit

Setr1(T]li,Cii) = 0 = r1(Til2,Cli)

Forj = 0to30

Tij = ((30-j)/30)(7c) + e e>0 to avoid (sin(0))/0

sei = sin(etal) eel = cos(etal)

For i = -30 to 30

^=(^30)71

szl = sin(zetal) czl = cos(zetal)

x_minus_xl_unit = [Vl_unit, Vl_perp]*[cel, sel*czl, sel*szl]

cos_phi = x2_minus_xl_unit dot x_minus_xl_unit

cos_gam = V2_unit dot x_minus_xl_unit

Initialize r2 = 212(11!. ^^ - r^Th. 2X\) (linear extrapolation)

Do four iterations of: (equations 12 and 87-91)

rl_over_r2_old = rl_over_r2

r2_over_rl2 = sqrt(rl_over_rl2*2 -2*cos_phi*rl_over_rl2 + 1)

eta2 = acos((cos_los+rl_over_rl2*cos_gam)/r2_over_rl2)

k_of_eta = kO * eta2 / sin(eta2)

rl_over_rl2 = k_of_eta * r2_over_rl2

rl(ij) = rl_over_rl2*rl2

i2(i j) = r2_over_rl2*rl2

Tl = (rl/vl) * etal / sin(etal)

T2 = (r2/v2) * eta2 / sin(eta2)

accell(ij) = 2 * etal * vl / Tl

accel2(i j) = 2 * eta2 * v2 / T2

End i loop

End j loop

save (i j) if max time

Tl = T2 if converged

(angle*radius=v*T accel=v*v/r)

(angle*radius=v*T accel=v*v/r)

r

r
I;

I

44

accel; = [1,., hj]
sin(Tii)
cosCnj)

2Tlil|V:(0)||
''"-' i = 1,2 (92)

T:

so

.. 1H 2HVi(°)H2 Si*fri> • , , m, HacceljH = l = 1,2 (93)
ri

If we assume 10 floating-point operations each for computing atan2, sin, and sqrt, then

evaluation of the inner loop equations takes approximately 31 floating-point operations.

Doing 4 iterations on a 30 x 60 grid requires a 31*4*30*60 = 223,000 floating-point opera-

tions. The outer loops of the iteration account for an additional 27,000 floating-point opera-

tions. This gives a total of approximately 250,000 floating-point operations. A 1 Mflop com-

puter could update this guidance algorithm at 4 Hz.

Convergence of Iteration

Theorem 3: The iteration converges at points on the solution surface where:

(r-r1(0))T-^i<0 (94)
dr

i.e., whenever the surface is star-shaped.

Proof:

The iteration is of the form:

'!„. = Gfrw ix.) 05)

where 1, is a unit vector based at the point rj(0), and ^ is the distance along that unit vector.

For each fixed value of the unit vector, the iteration has a fixed point at the value of T{ that

gives the point on the solution surface:

45

r = r1(0) + r1lIi (96)

We define the function G by:

G = rj - F(r) = k r2 (97)

Then

dG ■_• 1--dF
dfi drj

h> dr

1- 1 - k LTn hj _1_

Tl2 tan(ri2)

k ^[^ hj 1
1 1

Tj2 tan(Ti2)

(98)

The iteration converges when I-—I < 1, which is ensured when
drj

k -v/l + (- l-—)2 < 1
\ T]2 tan(T]2)

(99)

or

11X2(0)11 ^ Tl2

IIV^O)!! sin(Ti2) V 1 +
1 1

T\2 tan(Ti2)
(100)

Note that this is the same bound found for ensuring that the intercept surface had no singulari-

ties in regions of space (values of rj2) that satisfied the above inequality for some given

11X2(0)11
IIY^O)!!'

46

Finally,

! T dF =1_dG >0 whenever l-^-l<l (101)
-ri dr dr2 dix

T dF
So the iteration converges whenever l^1 — > 0

Note that the function —- has value 0, and slope +1 at TI2 = 0, and is monotoni-
T\2 tan(Ti2)

cally increasing, going to infinity at "n2 = TC.

The function k(T|2) is monotonically increasing as T|2 goes from 0 to TC. The function k(T|2)

goes to +oo as T[2 goes to TC.

47

5. Algebraic Algorithm for Computing the Intercept Surface

For cases where the iteration defined in the previous section does not converge, we can solve

algebraically for all points on the two-dimensional intercept surface in R3. We can use Tjj

and T[2 as coordinates on the two-dimensional surface. For fixed T^ and r|2, equation 12

defines an ellipsoid in R3. Equation 8 indicates that fixing r^ defines a circular cone in R3

with vertex at jj(0) and axis-of-symmetry V^O). Equation 8 also indicates that fixing r\2

defines a circular cone in R3 with vertex at £2(0) and axis-of-symmetry V^O). The intersec-

tion of these three quadratic surfaces in R3 results in 8 (some possibly complex) solution

points for each fixed pair (Hi/r^).

To get three second-order algebraic equations, we will use Cartesian coordinates for the ellip-

soid in equation 12, and for the two cone equations: Tjj = constant, TI2 = constant. Squaring

equation 12 gives:

2_ Ill-iiCO)!!^
liy^O)!! ri2 sin(Th)

||V2(0)|| TU sin(ri2)
Ur-l2(0)||2 (102)

If we let:

k =
liy^O)!! 7]2 sin(Th)

||V2(0)|| TIJ sin(Tl2)

then equation 102 becomes:

it-ZiCO)!!2 = k2 l(r - i^(0)i|2

which is a second-order algebraic equation for a circular ellipsoid in R .

(103)

(104)

Setting TJi = constant gives a circular half-cone with vertex at jj(0) and axis-of-symmetry Vj(0)

48

h li(0) Vi(0) = cosCiii) ||Vi(0)|| ||r -£(0)|| i=l,2 (105)

Squaring equation 105 gives a second-order polynomial equation:

0 = [r - ri(0)]T [vl(0)Vi(0)T - I cos2^) UVj(0)||2 r-rj(O) i=l,2 (106)

Equation 106 is for a full cone, instead of a half-cone, since the sign of cos(Tii) is ignored.

Together, equations 104 and 106 are three second-order equations in the three Cartesian com-

ponents of r. By Bezout's theorem, we expect up to eight solutions for each fixed set of

(1i.il2)-

To solve the three equations, we first rotate, translate, and uniformly stretch the coordinates to

move the two cone vertices to x = ±1:

l!(0) -> 12(0) ->
-1
0
0.

(107)

We then rotate the coordinate system about the x axis (leaving the above two points fixed) till

V^O) has no z component.

In this new coordinate system, let:

x
y

Lzj
= r

Yi(0)
cos^iiy,^)!!

Ya(0) -12'
cosCn2)i|V2(0)ii

(108)

The three second-order equations can then be written as:

49

A

0 =

x-1
x+1

y
z

-10 0 0

0 k2 0 0

0 0 k2 - 1 0

0 0 0 k2 - 1

x-1
x+1

y
z

ellipsoid

0 =

x-1
x+1

y
. z .

a2-l 0 ab 0
0 0 0 0

ab 0 b2 - 1 0
0 0 0 -1

x-1
x+1

y
z

cone! (110)

0 =

x-1
x+1

y
z

0 0 0 0

0 d2 - 1 de d f

0 de e2 - 1 e f

0 d f e f f2 - 1

x-1
x+1

y
. z .

cone2 (111)

To continue the solution process, we introduce a bi-rational transformation:

Y
l

x-l"
x+1 X 1 u+l"

y 2v
V x-1 y 7, u-1 ?,w LwJ L. z J

(112)

Since this only differs by a scalar from the old 4-vector, the three matrices in equations 109,

110, and 111 remain unchanged:

0 =

-10 0 0

0 k2 0 0

0 0 k2 - 1 0

0 0 0 k2 - 1

ellipsoid (113)

50

0

a2 - 1 0 ab 0
0 0 0 0

ab 0 b2 - 1 0
0 0 0-1

cone
(114)

l

0 =

0 0 0 0

0 d2 - 1 de d f

0 de e2 - 1 e f

0 d f e f f2 - 1

cone2 (115)

The next step in the solution is to get a combination of equations 113 and 114 to be of the

form: u2 = f(v) and w2 = g(v) where f(v) and g(v) are quadratic polynomials in v. Then

equation 115 will be both rearranged and squared two times to get a fourth-order equation in

(u2, v2, w2). By replacing u2 and w2 with f(v) and g(v), we then get an eighth-order polyno-

mial in v alone. The eight v solutions can be used to obtain the eight corresponding values of

u and w.

Taking equation 113 plus k2-l times equation 114 gives an equation of the form u2 = f(v):

k2 u2 = 1 - (k2 - 1) [(a2 - 1) + 2 a b v + b2 v2] (116)

Equation 114 is already of the form w2 = g(v):

w2 = (a2 - 1) + 2 a b v + (b2 - 1) v2 (117)

We are now ready to begin working on getting equation 115 in the form of a fourth-order

equation in (u2, v2, w2). We begin by using M to denote the 3 x 3 nonzero submatrix in

equation 115.

51

0 =

mll m12 m13

m12 m22 m23

m13 m23 m33

u
V

Lwj
(118)

Rearranging equation 118 gives:

mll m12

mi2 m22
+ w m33 w = -2 w [m13, m^] (119)

Note that when the [^(0)^2.(0)y_i(0),yj(0)] data is planer, we get f=0, so m13 = 0 = 0123. In

that case, we can separate the uv dependence in equation 119, replace u2 and w2 with qua-

dratic polynomials in v, then square the resulting equation to get a quartic equation in v.

For the non-planar case, we can square both sides of equation 119 to get:

12 *

< u T mll m12

m12 m22
u
.v. + m33 w* \ = 4w2 u

y

ml3
m23

[m13> m^] (120)

Expanding and rearranging equation 120 gives:

w2

m 11

symmetric

mnm22+2m12; ^„-W

m33m22-2m23

2

m22

m l33

U"

W

= 4 u v [-m^mj! u2 - m12m22 v2 + (2m13m23 - m33m12)w2]

(121)

Squaring both sides of equation 121 gives:

0 =
u4 T

u4 u4
T 2 2 V w

V4 A v4 + 4 v4 B 2 2

w4 w4 w4 2 2 Uz Vz

(122)

52

where the entries of A are given by:

ay = my4 i = 1,2,3
(123)

ay = 3mü
2m/ + Sm^niij2 - m^)

and the entries of B are given by:

bH = mii
2(3mijmkk - 2rc^) - 4mii(mjjmik

2 + m^my2) + 8mikmij(2miimjk - m^)
(124)

by = mjfimtfOfr - 2mik
2) (ijjk) cyclic permutation of (1,2,3)

If we substitute equations 116 and 117 into equation 122 for each occurrence of powers of u2

and w2, we get an eighth-order polynomial in v alone. We can put the coefficients of this

polynomial into an 8 x 8 companion matrix, whose eigenvalues will be the roots of the poly-

nomial.

If we substitute equations 116 and 117 into equation 121 for each occurrence of uz and vr,

we get a linear equation in u, whose coefficients are polynomials in v. By evaluating these

coefficients with the 8 values of v found above, we get the 8 corresponding values of u.

If we substitute equations 116 and 117 into equation 119 for each occurrence of u2 and w2,

we get a linear equation in w whose coefficients are polynomials in u and v. By evaluating

these coefficients with the 8 values of u and v found above, we get the 8 corresponding

values of w.

Finally, we can use the right part of equation 112 to convert [u,v,w] back to [x.y.z]. This

gives us the [x,y,z] values on the two-dimensional intercept surface for each value of the

Oll» I2) coordinates.

53

A numerical example is given below.

Input Data:

rl_ =[0.5163; 0.3190; 0.9866]

r2_ =[0.0606; 0.9047; 0.5045]

Vl_ = [0.2363; 0.0490; -0.1546]

V2_ = [0.0782; -0.3340; 0.3554]

etal = 1.5407 \

eta2= 0.5354

i

Computed Results: .

k = 0.5802 f
i'
y

los = 0.4000

nonn(Vl_)/nonn(V2_) = 0.5802 £

eta2c = (pi - asin(norm(Vl_)/norm(V2J) + los)/2 = 1.4613

(nonn(V2_)/norm(Vl_))*(sin(eta2c)/eta2c)*sin(eta2c-los) = 1.0236 L

def = V2/(norm(V2)*cos(eta2)) = [1.0709; -0.4527; 0.0071]

abO = Vl/(norm(Vl)*cos(etal)) = [0.5895; 33.2048; 0]

order8_poly = 1936656295. 290948514. -27327350. -4381463.6 173893.7

22468.886 -702.23409 -39.84748 1.34520

uv0_coeff = 55649.908255 3712.345422 -424.606279 -17.178161 1.15982968

uvl_coeff = 440.828064411611 15.485303259795 -2.088513070591

[w0_coeff, wl_coeff] = [0.12675655356533, 0.07321379932120]

54

uvw =

8.3079 -0.1243 3.4003

6.3804 -0.0991 -2.5165

-7.3963 0.0773 -2.9874

-5.8503 0.0571 2.2673

-4.9642 -0.0805 -1.8345

-4.4625 -0.0738 1.5786

5.3506 0.0505 2.0264

4.7569 0.0426 -1.7313

% Bi-Rational transformation

x(j) = (uG)+D/(u(j)-i);

yC)= 2*v(j)/(uG)-l);

z(j)= 2*w(j)/(uO>D;

xyz =

1.2737 -0.0340 0.9306

1.3717 -0.0368 -0.9354

0.7618 -0.0184 0.7116

0.7080 -0.0167 -0.6619

0.6647 0.0270 0.6152

0.6339 0.0270 -0.5780

1.4597 0.0232 0.9315

1.5323 0.0227 -0.9217

These eight solutions also satisfy the HALF-cone restrictions of equations 105.

55

The computational cost of evaluating equations 103, 108, 118, 123, and 124 is approximately

240 floating-point operations. The cost of computing the eigenvalues of an 8 x 8 companion

matrix is approximately 4 * 83 = 2048 floating-point operations. The cost of back-substitution

into equations 121, 119, and 112 is approximately 70 floating-point operations. This gives a

total of approximately 2400 floating-point operations for each fixed set of (r\lt T|2). If we use

a 30 x 30 grid for (T^, TI2), then the total computational cost is approximately 2.1 million

floating-point operations. This is approximately eight times as expensive as the iterative solu-

tion. A 2 Mflop computer could update the algebraic solution of the guidance algorithm at

approximately 1 Hz.

Degeneracy in Back Substitution:

When equation 122 (the eighth-order polynomial in v) is the square of a fourth-order polyno-

mial, equation 121 (made linear in u) gives a single u for each of the four v roots. However,

back-substitution equation 119 (made linear in w) reduces to 0 = 0, in which case we can use

equation 117 which gives two w solutions for each of the four separate (u,v) pairs.

When equation 122 (the eighth-order polynomial in v) is the fourth power of a second-order

polynomial, back-substitution equations 119 (made linear in w) and 121 (made linear in u)

both reduce to 0 = 0, in which case we can use equations 116 and 117 which give four (u,w)

solutions for each of the two separate v roots.

r
j
I

56

6. Examples

Figures 10 through 14 at the end of this section are from an example where the missile's

acceleration constraint is not exceeded anywhere on the intercept surface (except near the

end-game). Since the evading aircraft is slower than the pursuing missile, and the missile is

not on an acceleration constraint, the aircraft is completely enclosed by the intercept surface

and cannot escape. Therefore the aircraft heads for the point on the intercept surface that

results in the longest intercept time (in hopes that the missile's fuel runs out). The missile

assumes that the aircraft has headed for the point with the longest intercept time, so the mis-

sile also heads for that point

The guidance algorithm itself could update at 80 Hz on the 120 MHz Pentium that it was run-

ning on, but drawing the smoothly-lit color intercept surface on the screen each time took .5

seconds, so in this example, the intercept surface was only recomputed every .5 seconds.

Each .5 second, both vehicles get to pick new values for their optimal constant normal

acceleration inputs. In this example, it takes 38 seconds for the missile and aircraft to inter-

cept

Figures 15 though 18 are from the second example. In the second example, the same initial

positions and velocities were used as in the first example, but the aircraft makes no attempt to

maneuver. The aircraft flies on a straight path, while the missile still assumes that it will head

for the point on the intercept surface corresponding to the longest intercept time. The inter-

cept surface shrinks to a point as time progresses, causing the point the missile is headed for

and the point the aircraft is headed for, to come together. Since the aircraft has not headed

for the point that would result in the longest time to intercept, intercept occurs sooner than in

the first example (29 seconds instead of 38 seconds).

Both of the above examples were done using the iterative solution for the intercept surface.

57

Near the lower-right comer of figures 10 through 18 is printed an error, e.g. error = .0013 in

figure 10. This is the amount that rj changed on the fourth (final) iteration. The vehicles

start out around 8 "units of length" apart in each of the two examples, and the error is meas-

ured in those same units.

58

Example 1(5 frames from a simulation, update rate = .5 seconds)

Aircraft on piece-wise circular path

Missile on piece-wise circular path

59

>^.^_^—ha

cd
si
u
cd

i

-a
a

■o
<a

cd
Q.

o
3
U
k-

'Ö
I
0)
tfl

*
u
m

T3

m
a
w
c
cd

o
u
c
o
m
cd

'35
w

03

E

<£ cd

■a
c
cd

a.
cu
ü

«I Lf)

k.
CJ = o

th
 a

ir

e
y

w
i T—

£
O J= 09

CD h LL
\ ■■

od
X3

U
cd

"O
cu

-a
to
cu

S

z

cd
a.

s
u
'u

I
cu
w

'S
cu
u
cu
'5.
TJ

CU
CU a
(0

«L
c
cd

o
u
c
o
cu
cd
cu

■5t

09
tn

n
cu
E

<2 cd

a
cu
u

til

E
■a
c
cd

1 .E
u =

■B'5
£ CU
O -c

CD h-

o

CU

E
cd
a.

si

u

■a

40
0)

x:

id
a

u

A

cu
en
*
0)
u
a)
a

■a
03
a
a
w
e
id •** w
c
o
u a
c CO
0 n
0) ii

«Ü cu
a> £
'« 1-
<fl 0
E a
■o cu
c u
0
a *—
«5 c
k.

Ü zzz

a *
.c >,

cu
o C

CQ —

o
en

CO

E
0

LL

■H
4 : 1 ►

1 1 1 1 ■B ■ B
9 u EJ

it _ B
i -o is
i >- Ü£
= o E — *— ^HTfl
■ T3 E* - QJ ^H^4
= "Ö Bo]
5 a
5 Q) B
s H
■ w 5 .C g
i 0 kd
= Q. Ei HH
V 0 pd
5 = Ei M ^ ■Es | ü ■H
D QJ |ag
Zm w ■■ 3 'j B 2 Q3 E}
N u ^5
zifl QJ ^■Qf
=3 Q. B
■ T3

g
5 oi ^5
ft v B§ = D. BO(
a w IS z *L ■P^ : c H^l

i 5
1

o
; u o Ed
= C CO Hil
5 O en H
: .». 03 n Py]

E
= P ^ r- K9 = T w «- ■ T w jj ^E—

1 ^ D- »;
H "D 03 ^H~j
^1 C U ^Ef

1 ^Ü^^Sii ° °5 K=

9 /^^^Mfe^ 0 •-
in ^1^

D fl H 'S '■H B V V V ^■d
03 B^|

Hi ^ ^ £ « E
c M ■i^l O J-« ^B>^

i7| m h I»

■|i

4 '

►;

1 Ig

1 ■j

1 IM ■ »S3
1 ■ 9 u

T °
5 -Q
T >-
= o — **-
1 "°
= "O

i ° 3 a) •

s ■= B>sj

i « ■n - .c

Q. [Sj
£
■ o
; a ■B u u
■■ ^

■ 'Ü iyq
1 cu
^fl w
-1 J
3 QJ 9 ^ R9
^B QJ
3 Q.
■ "O
! QJ
i u
: o.
8 W
x <L
: c H—4

1 1
i E o
K u O

= C CO I o „ E m gj II

* Si CU

3 - r ■■^3

™ CO — T: **
Hzz

1 ^ o-
^^H "D CU HKTI

^H c (j

I Ö QJ
E9 A *= e LO ^B^

m % ö = o ,

1 ^ -*l Ln

cu
In • £ Q) E
■■■ O >C 0Ü

171 m h Li.

Example 2(4 frames from a simulation, update rate = .5 seconds)

Aircraft on straight line path

Missile on piece-wise circular path

65

td
ja

u
d
n
03

■o ^^M
03

T>
d "S3
0)
f

.c
d
Q.
^ , d

JE ^^^™
zs

d u a. ^
as u H=
c ni

~r 0)

j= *
CT 0)

'5 u
03 gS

CO a.
•a ■a
03 0) o B^
0}
a.
to

0)
a
co

en
CM

^E
*L J- n
r c
irt d as
co

•**
CO b ^hs

c c h- ^KM

o u
o u **

d
d d a. c
0

c
o cu

u
^K^

co CO
0)

T
B—

*: a) C
d ™ '■" o i- co :^ u co % r— Ec
d E > 03

E
d cu 03 03

J= J= j=

H- h 1- u_

-gMB
<

I ►

I
;j ^3 Htf

CO g
XJ Kff
Ü WS
u ^ff3
d Kjn

g Si ■ B 1 CU Brzj
oi ■B ** ^^ra h~
o E3

s "O IH
CU E

'» ^ od Bg
£ -\w m ^En

l
r x:

x:

Q.

0 I
—j JZ. ^E^J

3
J^ "5 U ^PB|
mm a b. ■B

cu 'Ü
1

g
c cu ^^^n

to HS
-^^: ' ~ ■'^Sh. +^ i S **-' ■ '^tets. -C KM

.^K Hk o1 cu ^E3
.^H ^L -'S». CO

Ü B—]
CD

S J fcfc A '5. s
fl K ■o H

£ a ■ 0) o ■H fl ■ 0 m EH? a. a'
1

g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *i* li

X ■ ■ § g pi
^H mm tx E ^ftSn

I Mm V w ._ ^^H V V = h- BM
v V v V F ^B ^^ od *->

_ CL K=
^^ ^^ S cu ^Krj

^^1 I^F^ o g B=
^^^^^^^^ .2 53

TT H
K*^l *s CU C ^B^

cd rzz ,— **-
o

CSJ

CU

E
0

^Hl
Ü

'5 m
is

s

y
 w

ill

1
CD CD CO HQ
x: x: r= ^BH

Pi h h- 1- it 1=

i

r

0
£
J«i
u
cd

J3

0)
J= <**
u
0

*♦—

■0
QJ

■O
id
0)

J=

f

CO
Q.
^ . cd

-C
+«* 3
cd U
Q. ^
0} u
c 0)

'■— w
*

01 0)

0 u
CD

a.
■O ■0

05 cu O
(11 a>
D.
W V)

ÜJ

«L 4L II
e c
«rl 0 LÜ

(A c
c
0 u

C
O
u CD

cd cd n c
0

c
0 u

.52 w

JC 0) C
<a ~ ,—

L. V) :—:
Ü

0

VI

£
*

QJ ai cu
J= JE J=

h h 1-

UJ ■— Q

Q)

E
cd

LL

-jm
<

I ►';

1
X zz H~2

to x .Q 109 1 ji men
U ^ 0 ■TTI

?! XI Eg
s 01 VfZj
™ JZ ■B
i +•* HtJ^i

hn ü o P] "^
£ ■D Hi ü 0) ES
x id ^^~~1
£ m ^C3

I
x:
Id
a 1

—1 JZ ^EZIT
3

™3 ^ U HI
z ^ W HP

Ü a 'Ü
1 H

j JE V)
Eg

— **
* s f ■vn i en CD ■ES
U K~J m CO QJ K3

a H
» -D ■a H
£ 0) 0) o B—1
5 0) 03 m ■7?3
5 Q- B : A ^ J- II Irr
; * § § | pi
. i — *" & x »to w ,r ■^Ci
s c s h- HM I o R *- Bn

HH
u .^ Hz

■ <0 *- _ a. K=
■^H c 0) H£^
H o Ü m— H ■2 53 „.

Bzs
R-l ES
■WMH S£ 0) C HP-
fll co « = ° H3 t" 'E

E2 '5 E * I 0)0) g ■m
|l^ QJ ^HO
■1 £ ■Y^. 171 h K I- £ ■1=

7. Summary

The proposed mini-max pursuit-evader algorithm allows both vehicles to maneuver in 3D

space and yet is fast enough to run real-time on today's flight computers. It also allows for

the possibility of providing the pilot of either a missile-launching aircraft, or a missile-evading

aircraft, an intuitively clear display of the current intercept surface with constraints and cost-

functional clearly displayed. This information can be used to help the pilot make a missile

launch decision.

The drawback of using the algorithm on the missile itself, is that the missile would need velo-

city and range measurements, either from its own sensors or from the launching aircraft.

We intend to further investigate this guidance algorithm and its behavior for various types of

constraints, cost functionals, and initial conditions. We also would like to compare the results

to more conventional mini-max pursuit-evader algorithms that do not make the piece-wise

constant speed, piece-wise constant acceleration assumptions that we have used.

The bounds of the form: vl/v2 = H(los) for acceleration limits and for convergence of the

iteration should be extended to the case were there is more than one arc in the piece-wise cir-

cular trajectories.

70

Bibleography

Title: On Curves of Minimal Length with a Constraint on Average Curvature,

and with Prescribed Initial and Terminal Positions and Tangents.

Author: Dubins, L. E.

Source: American Journal of Mathematics, 1957, vol. 79, pp. 497-516

Title: Some aspects of a realistic three-dimensional pursuit-evasion game

Author: Imado, Fumiaki

Corporate Source: Mitsubishi Electric Corp, Hyogo, Jpn

Source: J. of Guidance, Control, and Dynamics v 16 n 2 Mar-Apr 93. p 289-293

Abstract: A three-dimensional pursuit-evasion game between a realistic missile and an air-

craft is studied employing point-mass models for both vehicles. Since a direct method to solve

this complicated mini-max problem is too time-consuming, the study is conducted by carrying

out massive simulations in the parameter space of initial conditions and guidance law parame-

ters. The important role of information in the opponent's acceleration to the game and the

effectiveness of the strategy in rotating the line-of-sight vector are shown. It is found that

there exist very few cases where the aircraft can avoid the missile, among them typical air-

combat maneuvers such as linear acceleration, high-g barrel roll, split-S, and horizontal-S.

(Author abstract) 9 Refs.

Tide: Game optimal guidance law synthesis for short range missiles.

Author: Green, A.; Shinar, J.; Guelman, M.

Corporate Source: Technion-Israel Inst of Technology, Haifa, Isr

Source: J. of Guidance, Control, and Dynamics v 15 n 1 Jan-Feb 92. p 191-197

Abstract: A horizontal pursuit-evasion game of kind in the atmosphere between a coasting

pursuer with a final velocity constraint and a maneuvering evader of constant speed is

71

considered. For this model, which is suitable to describe short range missile engagements, the

adjoint equations can be integrated analytically. This allows us to determine the optimal stra-

tegies of the players on the boundary of the capture set, called the barrier, as a function of the

current and final values of the state variables. The main effect of the pursuer's final velocity

constraint, an important realistic parameter, neglected in previous studies, is a substantial

reduction of the capture zone. However, based on this game solution, a feedback guidance ;

law, suitable for real-time implementation, can be synthesized and compared to other guidance

laws. The results show that the corresponding capture set is much larger than the firing ■-

envelope of a similar missile guided by proportional navigation with the same final velocity

constraint. (Author abstract) 9 Refs. I

i

Title: Proceedings of the 4th International Symposium on Differential Games and Appli-

cations. .'

Author: Anon (Ed.)

Conference Tide: Proceedings of the 4th International Symposium on Differential

Games and Applications

Conference Location: Helsinki, Finl Conference Date: 1990 Aug 9-10

Source: Lecture Notes in Control and Information Sciences v 156 1991. Publ by }
1

Springer-Verlag Berlin, Dept ZSW, Berlin 33, Ger. 292p

-Abstract: This conference proceedings contains 29 papers. The papers address topics in ... |

differential games and applications. The papers discuss two main categories: classical zero-

sum differential games on computational questions as well as engineering applications, and

economics and management problems. Many of the papers discuss pursuit-evasion games as

applied to air combat.

Tide: Application of stochastic differential games to medium-range air-to-air missiles.

Author: Yavin, Y.; De Villiers, R.

Corporate Source: Univ of Pretoria, Pretoria, S Afr

72

Source: Journal of Optimization Theory and Applications v 67 n 2 Nov 1990 p 355-367

Abstract: Stochastic differential game techniques are applied to compare the performance of

a medium-range air-to-air missile for three different thrust-mass profiles. The measure of the

performance of the missile is the probability that it will reach a lock-on point with a favorable

range of guidance and flight parameters during a fixed time interval [0,tf].

Title: New results in optimal missile avoidance analysis

Author(s): Shinar, J.; Tabak, R.

Author Affiliation: Technion-Israel Inst. of Technol., Haifa, Israel

Journal: J. of Guidance, Control, and Dynamics, 1994 v.17, no.5 p. 897-902

Publication Date: Sept.-Oct. 1994 Country of Publication: USA

Abstract: Two-dimensional optimal avoidance of a proportionally guided coasting missile

of first-order dynamics by a constant speed aircraft is analyzed. This model allows us to

investigate the "missile outrunning" and "end-game evasion" maneuvers in the same

engagement. Three regions of different optimal missile avoidance strategies are

identified. All strategies are based on some compromise between the principles of "missile

outrunning", bleeding energy from the missile and minimizing the closing velocity and the

principles of optimal "end-game evasion", a final maneuver of a critical duration perpen-

dicular to the line of sight A synergetic interaction between aerodynamic drag and gui-

dance dynamics increases the sensitivity of a missile guided by proportional navigation to

evasive target maneuvers. Because of the missile aerodynamic drag, the aircraft can reduce

missile maneuverability by an "outrunning" maneuver so that in the "end-game" a larger

miss distance can be generated. The fresh insight gained by this investigation provides

important cues for both aircraft and missile designers. (14 Refs)

Title: Game optimal guidance law synthesis for short range missiles

SHINAR, J. (Technion - Israel Institute of Technology, Haifa); GUELMAN, M. (Rafael

73

Armament Development Authority, Haifa, Israel); GREEN, A.

J. of Guidance, Control, and Dynamics, v. 15, Jan.-Feb. 1992, p. 191-197.

Country of Origin: Israel Country of Publication: United States

Documents available from AIAA Technical Library

A horizontal pursuit-evasion game of kind in the atmosphere between a coasting pursuer

with a final velocity constraint and a maneuvering evader of constant speed is considered.

For this model, which is suitable to describe short range missile engagements, the adjoint

equations can beintegrated -■-analytical-ly-Thts-al-lows-äie-optimal-'-strategies-- of- the-players on

the boundary of the capture set, called the barrier, to be determined as a function of the

current and final values of the state variables. The main effect of the pursuer's final velo-

city constraint is a substantial reduction of the capture zone. However, based on this

game solution, a feedback guidance law, suitable for real-time implementation, can be

synthesized and compared to other guidance laws. The results show that the corresponding

capture set is much larger than the firing envelope of a similar missile guided by pro-

portional navigation with the same final velocity constraint. (Author)

Title: Game theory for automated maneuvering during air-to-air combat

AUSTIN, FRED; CARBONE, GIRO; HINZ, HANS (Grumman Corporate Research

Center, Bethpage, NY); LEWIS, MICHAEL (NASA, Ames Research Center, Moffett Field,

CA); FALCO, MICHAEL

Grumman Aerospace Corp., Bethpage, NY.

(AIAA Guidance, Navigation and Control Conference, Monterey, CA, Aug. 17-19,

1987, Technical Papers. Volume 1, p. 659-669)

Journal of Guidance, Control, & Dynamics, v. 13, Nov.-Dec. 1990, p. 1143-1149.

Title: Avoidance of detection in 3-D. Pursuit-evasion differential games, III.

Authors: Zheleznov, V. S., Ivanov, M. N., Kurskii, E. A., Maslov, E. P.

Author Affiliation: Institute of Control Sciences, 117806 Moscow, Russia

74

Computers &Mathematics with Applications. An International Journal, 1993, 26, no. 6,

55-66. ISSN: 0898-1221 CODEN: CMAPDK

The problem of avoidance of a moving spatial zone in 3-D is considered with the assump-

tions: (1) the pursuer (P) and an evader (E) are moving in 3-D, (2) E is capable of instantane-

ous simple turns with velocity vector (v), and (3) P moves with constant (unit) velocity along

a straight line. A spatial detection zone, which is the intersection of an ellipsoid and an ellip-

tic cone, is attached to P. The evader's goal is to avoid the detection zone. The authors define

a moving system XYZ, its origin is affixed to P and the X-axis is in the direction of P's velo-

city in R3. The X- and Y-axes are located in the horizontal plane.

The problem is reduced to an optimal control problem with pay-off and terminal conditions.

The formulation of this problem is not a new one, as it considers the problem of detecting

E by a constrained P carrying a radar system. Such problems were studied by the reviewer [in

Proceedings of the 21st IEEE Conference on Decision and Control (Orlando, FL, 1982), 191-

-194, IEEE, New York, 1982; CCA 1983:11527] and by T. L. Vincent [in The theory and

application of differential games (Coventry, 1974), 267-279, Reidel, Dordrecht, 1975; MR

58#26100].

Reviewer: El-Arabaty, Moustafa (Cairo)

Proceedings Reference: 94b#90108; 1 232 257

Pursuit-evasion differential games, in.

Edited by Y. Yavin and M. Pachter. Comput. Math. Appl. 26 (1993), no. 6.

Contributors: Yavin, Y.; Pachter, M.

Publ: Pergamon Press, Oxford,

1993, pp. v-x and 1-152. ISSN: 0898-1221 CODEN: CMAPDK

Pursuit-evasion differential games,; Special Issue: Pursuit-evasion differential games, 3 3

The twelve papers in this collection include the following: D. Ghose and U. R. Prasad,

Determination of rational strategies for players in two-target games (1--11); E. A. Galperin,

The cubic algorithm for global games with application to pursuit-evasion games (13-31); M.

75

Guelman, Control strategies in a planar pursuit evasion game with energy constraints (33--41);

T. Miloh, M. Pachter and A. Segal, The effect of a finite roll rate on the miss-distance of a

bank-to-turn missile (43-54); V. S. Zheleznov, M. N. Ivanov, E. A. Kurskii and E. P.

Maslov, Avoidance of detection in 3-D (55-66); M. N. Ivanov and E. P. Maslov, A problem

of avoidance of a rotating segment (67-75); D. A. Klementiev, The 3-D detection problem of I

an evader moving in a fixed plane (77—85); Y. Yavin, Applications of stochastic differential j

games to the suboptimal design of pulse motors (87-95); A. Garcia-Ortiz, J. Wootton, E. Y.
£

Rodin et al., Application of semantic control to a class of pursuer-evader problems (97-124); \

F. Imado and T. Ishihara, Pursuit-evasion geometry analysis between two missiles and an air-
f

craft (125-139); E. Airman [Eitan Meir Airman] and G. Koole, Stochastic scheduling games t

with Markov decision arrival processes (141-148). i

Title: Nonlinear Regulation and Nonlinear H„ Control Via the State-Dependent Riccati Equa-

tion Technique.

Authors: James R. Cloutier, Cristopher N. D'Souza, and Curtis Mracek

Submitted for Publication:, July 1995

Abstract: A new technique for systematically designing nonlinear regulators is introduced.

The method consists of first using direct parameterization to bring the nonlinear plant to a

linear structure having state-dependent coefficients (SDC). A state-dependent Riccati equation

(SDRE) is then solved at each point x along the trajectory to obtain a nonlinear feedback con-

troller of the form u = -R_1(x)g(x)TP(x)x, where P(x) is the solution of the SDRE. In the

case of scalar x, it is shown that the SDRE approach yields the optimal solution of the non-

linear regulator. In the multivariable case, it is shown that for any SDC parameterization that

is strongly controllable and strongly observable, the SDRE method produces a closed loop
£

solution that is globally asymptotically stable provided that the state and control weighting |

c
i
i

matrices are chosen properly. It is shown that, if it exists, the parameter-dependent SDC .■

parameterization can be computed such that the multivariable SDRE closed loop solution is *-

optimal. Additionally, for the case of parameter variations, the robustness of the method is |

76

characterized. A general nonlinear minimum-energy (nonlinear H„) problem is then posed.

For this problem, the SDRE method involves the solution of two coupled SD Riccati equa-

tions at each point x along the trajectory. In the case of full state information, it is shown

that the SDRE nonlinear H« controller, assuming properly chosen weighting, is internally

stable. Examples are provided which illustrate the effectiveness of the SDRE technique.

77

/* missile.c Draws the intercept surface of an aircraft and missile
* August 06» 1995 Mike Elgersma
* November 05, 1995 Include option to make 2 surface-components tangent. ;:

* November 19, 1995 Put in acceleration constraints.
* November 19, 1995 Replaced vector iteration with faster scalar iteration.
* November 21, 1995 x_minus_xl_unit - [Vl_unit,Vl_perp]«[cel,sel«szl,sel»czl]
* Algorithms from: Morton & Elgersma ECALM paper
* OpenGL code modified from: Feb. 1995 MS Journal pp 19-40
« */

#include <stdio.h>
#include <stdlib.h> \~
^include <math.h> '
#include <windows.h> *'
#include <GL/gl.h>
^include <GL/glu.h> f~

f:'-
#define pi 3.1416f/* slightly bigger than pi, so surface has a little overlap. •/ X
/* Typically choose num_eta-30 and num_zeta-60 since zeta has twice the range,

but for checking the point where two surface components meet, the surface gets /
stretched in the eta direction, near eta-0, so use more eta points; - -v- */ f

tfdefine num_eta 30 /• The number of points on 0 < eta < pi on 2-sphere «/ V;
#define num_zeta 60 /* The number of points on 0 < zeta < 2«pi on 2-sphere »/
#define num_iter 4 /« number of iterations to find radius on warped 2-sphere */

void initialize_state(float xyzl_0[3].float xyz2_0[3],float Vl_0[3],float V2_0[3], j;;

float dx0[3], float Vl[3],float V2[3]);
float cone2(float Vl[3], float V2[3]); ,-
void intercept2(float xyzl_0[3], float Vl_0[3], float xyz2_0[3], float V2_0[3], |-

float »rl_error, float T2_e_z[num_zeta+1][num_eta+l], tj
float x_s[num_zeta+l][num_eta+l], float y_s[num_zeta+l][num_eta+l],
float z_s[num_zeta+l][num_eta+l], float xyz_T2_max[3],
float accel_l[num_zeta+l][num_eta+l], £T
float accel_2[num_zeta+l][num_eta+l]); I

void cross_prod(float cross[3], float vecl[3], float vec2[3]); X

LONG WINAPI WndProc (HWND. UINT, WPARAM, LPARAM); f
void SetDCPixelFormat (HDC); |
void InitializeRC (void); *•
void DrawSurface(float x_s[num_zeta+l][num_eta+l], float y_s[num_zeta+l][num_eta+l],

float z_s[num_zeta+l][num_eta+l], float T2_e_z[num_zeta+1][num_eta+l], c.
float accel_l[num_zeta+l][num_eta+l], float accel2[num_zeta+l][num_eta+l], |
float accel_l_limit, float accel_2_limit); |^

//void DrawScene (HDC hdc, float vert_angle, float horz_angle);
void DrawScene (HDC hdc);

HPALETTE hPalette - NULL; &

//const int textcolor[16] - {C0L0R_WIND0WTEXT}; // used by SetSysColor to get black text
//const int bkcolor[l&] - {C0L0R_WIND0W}; // used by SetSysColor to get white background £
//const COLORREF blackcolor[3] - {RGB(0,0,0)}; //used by SetSysColor to get black text \?'
//const COLORREF whitecolor[3]-{RGB(255,255,255)};// used by SetSysColor to get white background l-

float x_s[num_zeta+l][num_eta+l]; // x coord of point on intercept surface \
float y_s[num_zeta+l][num_eta+l]; // y coord of point on intercept surface y
float z_s[num_zeta+l] [num_eta+l]; // z coord of point on intercept surface '<■■
float T2_e_z[num_zeta+1][num_eta+l];
float accel_l[num_zeta+l][num_eta+l], accel_2[num_zeta+l][num_eta+l];// accel of veh 1 and 2 {
float accel_l_limit, accel_2_limit; f'
float xyz_T2_max[3]; /* location on surface with max intercept time */ £
float rl_error - O.lf;/* max error in computed dist from aircraft to surface »/
float eta2_kl;

/« The following temporary variables are used to update the state variables »/ \
float Time - O.Of, dT - .5f;
float centerl[3], vl_0;
float center2[3], v2_0; f"
float crossl[3], dist_sql, radiusl, Wl[3],wl, rad_vecl[3],rad_vecl_[3], csl,ssl; £
float cross2[3], dist_sq2, radius2, W2[3],w2, rad_vec2[3],rad_vec2_[3], cs2,ss2;

/* The following "state" variables get updated when time advances »/ |
// j-
// -
/« 1

//This data is planar and gives a surface that just touches the cone
float xyzl_0[3] - { O.OOOf, O.OOOf, O.OOOf}; // position of aircraft

{-4.603f ,-8.876f, 2.954f}; // position of missile
{-4.603f«1.4f,-8.876f*1.4f, 2 .954f*l .4f}; // position of roissile(scale)

-.593f, .139f}; // velocity of aircraft
2.961f, -.761f}; // V2 >> VI to allow intercept

{-2.f, -4.f, 1.5f}; // center between xyzl_0 and xyz2_0 INITIAL

-50.Of; // degrees
210.Of; // degrees

rotate view about vertical axis
rotate view about horizontal axis

//float xyz2_0[3]
float xyz2_0[3]
float Vl_0[3] - { 1.234f,
float V2_0[3] - {-4.199f
float mid_point[3]
//
float vert_angle -
float horz_angle -
// limits
float accel_l_limit - 1.4f; // 2*Vl*Vl/|rl-r2|
float accel_2_limit - 4.Of; // 2*V2*V2/|rl-r2|
float d_accel » .If; // changes in accel limits when F7 and F8 key used
»/
//
//
// This data in the Ecalm Final Report, December 1995
float xyzl_0[3] - { O.Of, O.Of, O.Of}; // position of aircraft
float xyz2_0[3] - { 6.Of,-5.Of, 4.Of}; // position of missile

{ -.3f, -.If, -.If}; // velocity of aircraft
{ -.2f, .Of, -.6f}; // V2 >> VI to allow intercept

- {3.f, -2.5f, 2.f}; // center between xyzl_0 and xyz2_0 INITIAL

float Vl_0[3]
float V2_0[3]
float mid_point[3]
//
float vert_angle
float horz_angle

-20.Of; // degrees
20.Of; // degrees

rotate view about vertical axis
rotate view about horizontal axis

// limits
float accel_l_limit - .If; // 2«Vl»Vl/|rl-r2|
float accel_2_limit - .15f; // 2*V2«V2/|rl-r2|
float d_accel - .02f; // changes in accel limits when F7 and F8 key used
// _ ^
/»
// This data gies an accel2_limit region with a hole in it
float xyzl_0[3] - { O.Of, O.Of, O.Of}; // position of aircraft
float xyz2_0[3] - { 6.0f«2.0f,-5.0f»2.0f, 4.0f«2.0f}; // position of missile
float Vl_0[3] - { -.30f, .25f, -.20f}; // velocity of aircraft
float V2_0[3] - { -.66f, .51f, -.44f}; // V2 >> VI to allow intercept
float mid_point[3] ■ {3.f, -2.5f, 2.f}; // center between xyzl_0 and xyz2_0 INITIAL
//
float vert_angle
float horz_angle
// limits
float accel_l_limit - 0.220f/2.0f; // 2*Vl«Vl/|rl-r2|
float accel_2_limit - 0.053f/2.0f; *// 2«V2«V2/|rl-r2|
float d_accel - .002f; // changes in accel limits when F7 and F8 key used
»/
//
/*
// This data needs more grid points or more iterations to converge, 120x120 grid, 4 iterations
// NONplanar (almost 3 orthog vectors) and gives a surface that just touches the cone

-20.Of; // degrees
-30.Of; // degrees

rotate view about vertical axis
rotate view about horizontal axis

float xyzl_0[3] - { O.Of, 0
//float xyz2_0[3] - { 0.2f,
float xyz2_0[3] - { 0.4f,
//float Vl_0[3] - { 2.294f,
float Vl_0[3] - { 2.290f,
float V2_0[3] - { .20f, 4.

Of, O.Of}; // position of aircraft
6.Of,-4.Of}; // position of missile
12.Of,-8.Of}; // position of missile (x2-xl stretches everthing)
.20f, .20f}; // velocity of aircraft
.20f, .20f}; // velocity of aircraft

OOf, 6.00f}; // V2 >> VI to allow intercept
float mid_point[3]
//
float vert_angle - - 60.Of

{O.f, 3.f. -2.f}; // center between xyzl_0 and xyz2_0 INITIAL

// degrees
float horz_angle -
// limits
float accel_l_limit
float accel_2_limit
float d_accel - .If
»/
//

120.Of; // degrees
rotate view about vertical axis
rotate view about horizontal axis

3.Of; // 2*Vl«Vl/|rl-r2|
8.Of; // 2*V2«V2/|rl-r2|

// changes in accel limits when F7 and F8 key used

int big_cone - 0; // initialize with no cone drawn (Home key turns on cone etc.
int sign - 1; // "END" key changes this to -1 to flip sign on keyboard entry.

float dx0[3]; //initial offset
float Vl[3]; // initial velocity of aircraft
float V2[3]; // initial velocity of missile 2

// For changing VI so solution components just touch.
float V2_unit[3], V2_per[3],d_r_unit[3], d_r[3], tmp[3], Vl_dir[3], Vl_unit[3]; i
float v2. los» vl_over_v2, eta2c, r2, V2_dot_r, Vl_dir_norm, delta_r, cos_eta2c, sin_eta2c;

float dlos. cos_dlos, sin_dlos; // to change los. by changing V2_0
float drl_kiss, rl_kiss[3]; // to plot the (ellipsoid, cone) kiss point ;
// :
/*
» Function WinMain.
«/

int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevInstance, t-
LPSTR IpszCmdLine, int nCmdShow)

{

static char szAppName[]-
"Intercept Surface: aircraft at 'apple stem', black ball at max-time intercept";

WNDCLASS wc;
HWND hwnd; }
MSG msg; T

wc.style - CS_HREDRAW | CS_VREDRAW; // Horizontal or Vertical redraw?
wc.lpfnWndProc - (WNDPROC) WndProc; f
wc.cbClsExtra « 0; /",
wc.cbWndExtra »0; *
wc.hlnstance - hlnstnnce;
wc.hlcon - Loadlcon (NULL, IDI_APPLICATION); f
wc.hCursor - LoadCursor(NULL, IDC_ARR0W); j
wc.hbrBackground - (HBRUSH) (C0L0R_WIND0W +1); // overwritten by glClearColor later fc.
//wc.hbrBackground - (WHITE_BRUSH); // overwritten by glClearColor later
//wc.hbrText - (HBRUSH) (C0L0R_WIND0WTEXT +1); // Try to make black text ERROR f
wc.lpszMenuName - NULL; i
wc.lpszClassName - szAppName; :■-.

RegisterClass (&wc); f.
r

//hwnd - CreateWindow (szAppName, szAppName, [
// WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,
// CWJJSEDEFAULT, CWJJSEDEFAULT, CWJJSEDEFAULT» CW_USEDEFAULT. //random
// HWND_DESKTOP, NULL, hlnstance, NULL); I
hwnd - CreateWindow (szAppName, szAppName,

WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,
0,0,800,600, // u-pper_left_corner_xy and lower_right_corner_xy
HWND_DESKTOP, NULL, hlnstance, NULL);

ShowWindow (hwnd, nCmdShow);
UpdateWindow (hwnd);

initialize_state(xyzl_0,xyz2_0,Vl_0,V2_0, dxO.Vl.V2); //aircraft and missile

//SetSysColors(l, bkcolor, whitecolor); // white background
//SetSysColors(l. textcolor, blackcolor); // black text

while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg);
DispatchMessage (&msg);

}
return msg.wParam;

}

/«
* WndProc processes messages to the main window.
«/

LONG WINAPI WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

static HDC hdc;
static HGLRC hrc;
PAINTSTRUCT ps;
GLdouble gldAspect;
GLsizei glnWidth, glnHeight;
static BOOL bUp = TRUE; 3

«:-

ä

4

static UINT nTimer;
int n;

//SetBkColor(hdc, GetSysColor (C0L0R_WIND0W)); // see p 223
//SetTextColor(hdc, GetSysColor (COLOR_WINDOWTEXT)); // see p 223

switch (msg) {

case WM_KEYDOWN:
switch (wParam)

{
/* Rotate the view */
case VK_LEFT:
vert_angle -- 10.Of;
return 0;

case VK_RIGHT:
vert_angle +- 10.Of;

case VK_UP:
horz_angle -- 10.Of;
return 0;

case VK_D0WN:
horz_angle +- 10.Of;
return 0;

case VK_END:
sign - -sign; // Changes sign on other keyboard entries
return 0;

/* Change Vl_ to make the two solution components just touch */
case VK_H0ME:
if (big_cone -=■ 2)
big_cone - 0;

else
{
big_cone - 2;
v2 - (float) sqrt(V2[0]»V2[0]+V2[l]«V2[l]+V2[2]*V2[2]);
V2_dot_r - V2_0[0]«(xyzl_0[0]-xyz2_0[0]) +

V2_0[l]»(xyzl_0[l]-xyz2_0[l]) +
V2_0[2]»(xyzl_0[2]-xyz2_0[2]);

delta_r - (float) sqrt((xyz2_0[0]-xyzl_0[0])*(xyz2_0[0]-xyzl_0[0]) +
(xyz2_0[l]-xyzl_0[l])*(xyz2_0[l]-xyzl_0[lj) +
(xyz2_0[2]-xyzl_0[2])*(xyz2_0[2]-xyzl_0[2]));

los - (float) acos(V2_dot_r/(v2»delta_r));

vl_over_v2 - .724f*(1.03f - (float)sin(los/2.0f));// solution components just merge
vl_over_v2 - .724f*(.99f - (float)sin(los/2.0f));// solution components just separate
vl_over_v2 = .724f*(1.01f - (float)sin(los/2.0f));// solution components about kiss
eta2c ■= (3.14159f - (float) asin(vl_over_v2) + los)/2.0f; // use to draw cone

// iterate to get better than 2'/. accuracy on max vl/v2 that gives separate sol comp
vl_over_v2 - (float) ((sin(eta2c)/eta2c) /

sqrt(1 + (l/eta2c - l/tan(eta2c))«(l/eta2c - l/tan(eta2c))));
eta2c - (3.14159f - (float) asin(vl_over_v2) + los)/2.0f;
vl_over_v2 - (float) ((sin(eta2c)/eta2c) /

sqrt(1 + (l/eta2c - 1/tan(eta2c))«(l/eta2c - 1/tan(eta2c))));
eta2c - (3.14159f - (float) asin(vl_over_v2) + los)/2.0f; // use to draw cone

d_r[0] - (xyz2_0[0]-xyzl_0[0]);
d_r[l] - (xyz2_0[l]-xyzl_0[l]);
d_r[2] - (xyz2_0[2]-xyzl_0[2]);
cross_prod(tmp, d_r, V2_0);
cross_prod(Vl_dir, d_r, tmp);// VI perp to d_r, in plane of d_r and V2_

Vl_dir_norm-(float)sqrt(Vl_dir[0]«Vl_dir[0]+Vl_dir[l]*Vl_dir[l]+Vl_dir[2]»Vl_dir[2]);

Vl_unit[0] - Vl_dir[0]/Vl_dir_norm;
Vl_unit[l] - Vl_dir[l]/Vl_dir_norm;
Vl_unit[2] - Vl_dir[2]/Vl_dir_norm;

drl_kiss - delta_r * (float) tan(eta2c - los);
rl_kiss[0] - drl_kiss»Vl_unit[0];
rl_kiss[l] = drl_kiss*Vl_unit[l]; 4

rl_kiss[2] - drl_kiss«Vl_unit[2]; // use to plot the (ellipsoid, cone) kiss point

V1_0[0] - vl_over_v2»v2«Vl_unit[0];
V1_0[1] - vl_over_v2-v2»Vl_unit[l];
Vl_0[2] = vl_over_v2*v2*Vl_unit[2];

Time - O.Of; // Restart time (then reset the initial condition)
VI[0] » V1_0[0]; // Transfer the current state to the new initial condition
Vl[l] = V1_0[1];
Vl[2] = Vl_0[2];
V2[0] -■V2_0[0];
V2[l] - V2_0[l];
V2[2] - V2_0[2];
dx0[0] = xyz2_0[0] - xyzl_0[0];
dx0[l] = xyz2_0[l] - xyzl_0[l];
dx0[2] - xyz2_0[2] - xyzl_0[2];
eta2_kl - cone2(Vl,V2);
}
return 0;

/* change the velocity of the missile »/ ■■
case VK_F3:

V1_0[0] += sign * .If; // increment one element of the current state
Time -= O.Of; // Restart time (then reset the initial condition)
VI[0] - V1_0[0]; // Transfer the current state to the new initial condition
Vl[l] - V1_0[1];
Vl[2] - Vl_0[2];
V2[0] = V2_0[0]; !
V2[l] - V2_0[l];
V2[2] - V2_0[2];
dx0[0] - xyz2_0[0] - xyzl_0[0];
dx0[l] - xyz2_0[l] - xyzl_0[l];
dx0[2] - xyz2_0[2] - xyzl_0[2]; /
eta2_kl - cone2(Vl,V2);
return 0;

case VK_F4:
V1_0[1] +- sign * .If;
Time = O.Of;
V1[0] - V1_0[0];
Vl[l] - V1_0[1];
Vl[2] - Vl_0[2];
V2[0] - V2_0[0]; |
V2[l] = V2_0[l];
V2[2] - V2_0[2];
dx0[0] - xyz2_0[0] - xyzl_0[0]; |
dx0[l] - xyz2_0[l] - xyzl_0[l]; i
dx0[2] - xyz2_0[2] - xyzl_0[2]; ' f

eta2_kl = cone2(Vl.V2);
return 0; f

case VK_F5: '
Vl_0[2] +- sign » .If;
Time - O.Of;
V1[0] = V1_0[0];
Vl[l] - V1_0[1];
Vl[2] - Vl_0[2];
V2[0] - V2_0[0];
V2[l] - V2_0[l];
V2[2] - V2_0[2];
dx0[0] - xyz2_0[0] - xyzl_0[0];
dx0[l] - xyz2_0[l] - xyzl_0[l];
dx0[2] - xyz2_0[2] - xyzl_0[2];
eta2_kl - cone2(Vl,V2);
return 0; i

case VK_F6: // change line-of-sight angle from missile to aircraft

// compute OLD los angle
v2 - (float) sqrt(V2[0]»V2[0]+V2[l]«V2[l]+V2[2]»V2[2]);

v2 - (float) sqrt(V2[0]«V2[0]+V2[l]»V2[l]+V2[2]»V2[2]); X
V2_dot_r - V2_0[0]«(xyzl_0[0]-xyz2_0[0]) +

V2_0[l]*(xyzl_0[l]-xyz2_0[l]) +
V2_0[2]«(xyzl_0[2]-xyz2_05 2]);

delta_r - (float) sqrt((xyz2_0[0]-xyzl_0[0])*(xyz2_0[0]-xyzl_G[0]) +
(xyz2_0[l]-xyzl_0[l])»(xyz2_0[l]-xyzl_0[l]) +
(xyz2_0[2]-xyzl_0[2])*(xyz2_0[2]-xyzl_0[2]));

los - (float) acos(V2_dot_r/(v2*delta_r));

// Compute unit vector perp to V2, in plane of V2 and (r2-rl)
V2_unit[0] - V2_0[0]/v2;
V2_unit[l] = V2_0[l]/v2;
V2_unit[2] - V2_0[2]/v2;
d_r_unit[0] - (xyzl_0[0]-xyz2_0[0])/delta_r;
d_r_unit[l] - (xyzl_0[l]-xyz2_0[1])/delta_r;
d_r_unit[2] - (xyzl_0[2]-xyz2_0[2])/delta_r;
V2_per[0] = (d_r_unit[0] - (floatjcos(los)*V2_unit[0]) / (float)sin(los).
V2_per[l] - (d_r_unit[l] - (float)cos(los)«V2_unit[1]) / (float)sin(los).
V2_per[2] - (d_r_unit[2] - (float)cos(los)»V2_unit[2]) / (float)sin(los).

dlos - sign * .01f; // los changed by the F6 key
los +- dlos;

// Rotate V2 by the increment in the los angle
cos_dlos - (float) cos(dlos);
sin_dlos - (float) sin(dlos);
V2_0[0] - V2_0[0]*cos_dlos - v2*V2_per[0]»sin_dlos;
V2_0[l] - V2_0[l]«cos_dlos - v2»V2_per[l]»sin_dlos;
V2_0[2] - V2_0[2]«cos_dlos - v2«V2_per[2]«sin_dlos;

Time - O.Of;
V1[0] - V1_0[0];
Vl[l] - V1_0[1];
Vl[2] - Vl_0[2];
V2[0] - V2_0[0];
V2[l] - V2_0[l];
V2[2] - V2_0[2];
dx0[0] - xyz2_0[0] - xyzl_0[0];
dx0[l] - xyz2_0[l] - xyzl_0[l];
dx0[2] - xyz2_0[2] - xyzl_0[2];
eta2_kl - cone2(Vl,V2);
return 0;

case VK_F7: /» change aircraft acceleration limits */
accel_l_limit - accel_l_limit + sign*d_accel;
return 0;

case VK_F8: /« change missile acceleration limits */
accel_2_limit - accel_2_limit + sign*d_accel;
return 0;

/» update the state */
case VK_F1: /* missile and aircraft each on arcs to xyz_T2_max */
Time +» dT;
// aircraft //
vl_0 -(float) sqrt(Vl_0[0]«Vl_0[0]+Vl_0[l]»Vl_0[l]+Vl_0[2]«Vl_0[2]);
crossl[0] - Vl_0[l]«(xyz_T2_max[2] - xyzl_0[2]) -

Vl_0[2]«(xyz_T2_max[l] - xyzl_0[l]);
cross1[1] = Vl_0[2]»(xyz_T2_max[0] - xyzl_0[0]) -

Vl_0[0]*(xyz_T2_max[2] - xyzl_D[2]);
crossl[2] - Vl_0[0]«(xyz_T2_max[l] - xyzl_0[l]) -

Vl_0[l]*(xyz_T2_max[0] - xyzl_0[0]);
dist_sql - (xyz_T2_max[0] - xyzl_0[0])»(xyz_T2_max[0] - xyzl_0[0]) +

(xyz_T2_max[l] - xyzl_0[l])*(xyz_T2_max[l] - xyzl_0[l]) +
(xyz_T2_max[2] - xyzl_0[2])»(xyz_T2_max[2] - xyzl_0[2]);

radiusl - .5f«vl_0*dist_sql/ (float)
sqrt(cross 1[0]»cross 1[0]+cross1[1]»cross 1[1]+cross1[2]»cross1[2]);

W1[0] - Vl_0[l]*crossl[2] - Vl_0[2]»crossl[l].
Wl[l] - Vl_0[2]*crossl[0] - Vl_0[0]«crossl[2]
Wl[2] - Vl_0[0]»crossl[l] " Vl_0[l]«crossl[0]
wl - (float) sqrt(Wl[0]»Wl[0] +W1[1]»W1[1] + W1[2]»W1[2]);
rad_vecl[0] - radiusl»Wl[0]/wl;
rad_vecl[l] - radiusl«Wl[l]/wl;
rad_vecl[2] - radiusl»Wl[2]/wl;
rad_vecl_[0] - radiusl«Vl_0[0]/vl_D;
rad_vecl_[l] - radiusl«Vl_0[l]/vl_0;
rad_vecl_[2] - radiusl»Vl_0[2]/vl_0;6

csl - (float
ssl - (float
center![0] =
center1[1]
centerl[2]
xyzl_0[0]
xyzl_0[l]
xyzl_0[2]
V1_0[0] -
V1_0[1] -
Vl_0[2] -
// missile --
v2_0 -(float)

cos(vl_0»dT/radiusl);
sin(vl_0»dT/radiusl);

rad_vec1 xyzl_0[0]
xyzl_0[l]
xyzl_0[2]

- centerlfO]
- centerl[l]
-= centerl[2]
(vl_0/radiusl)»(
(vl_0/radiusl)»(
(vl_0/radiusl)»(

+
+

rad.
rad.
rad.
rad.
rad.
-rad.
-rad.
-rad

vecl
vecl
vecl
vecl
.vecl
vecl
vecl
vecl

0]; // center of circle
l]i
2]:
0]*csl
l]-csl
2]«csl
0]*ssl
l]-ssl
2]«ssl

[0]«ssl;
[l]«ssl;
[2]»ssl;
[0]»csl);
[l]«csl);
[2]«csl);
 //

sqrt(V2_0[0]«V2_0[0]+V2_0[1]»V2_0[1]+V2_0[2]«V2_0[2]);

rad_vec1_
rad_vecl_
rad_vec1_
rad_vecl_
rad_vec1_
rad_vec1_

cross2[0] - V2_0[l]»(xy2_T2_max[2] - xyz2_0[2]) -
V2_0[2]»(xyz_T2_max[l] - xyz2_0[l]);

cross2[l] - V2_0[2]»(xyz_T2_max[0] - xyz2_0[0]) -
V2_0[0]*(xyz_T2_max[2] - xyz2_0[2]);

cross2[2] - V2_0[0]*(xyz_T2_max[l] - xyz2_0[l]) -
V2_0[l]»(xyz_T2_max[0] - xyz2_0[0]);

dist_sq2 (xyz-T2-max{0] —xyz2_€[0] >«^xyzr.T2-max[0]
(xyz_T2_max[l] - xyz2_0[l])»(xyz_T2_max[l]
(xyz_T2_max[2] - xyz2_0[2])»(xyz_T2_max[2]

radius2 = .5f«v2_0«dist_sq2/ (float)
sqrt(cross2[0]»cross2[0]+cross2[l]«cross2[l]+cross2[2]*cross2[2]);

W2[0] - V2_0[l]»cross2[2] - V2_0[2]*cross2[l];
W2[l] - V2_0[2]»cross2[0] - V2_0[0]«cross2[2];
W2[2] - V2_0[0]«cross2[l] - V2_0[l]*cross2[0];
w2 = (float) sqrt(W2[0]*W2[0] + W2[1]»W2[1] + W2[2]*W2
rad_vec2[0] - radius2*W2[0]/w2;
rad_vec2[l] - radius2»W2[l]/w2;
rad_vec2[2] - radius2«W2[2]/w2;
rad_vec2^[0] - radius2*V2_0[0]/v2_0;
rad_vec2_[l] - radius2*V2_0[l]/v2_0;
rad_vec2_[2] - radius2*V2_0[2]/v2_0;
cs2 - (float) cos(v2_0»dT/radius2);
ss2 - (float) sin(v2_0»dT/radius2);

- xyz2_0[0]) +
- xyz2_0[l]) +
- xyz2_0[2]);

![2]);

center2[0] - xyz2_0[0]
center2[l] - xyz2_0[l]
center2[2] - xyz2_0[2]
xyz2_0[0] - center2[0]

center2[l]
center2[2]

xyz2_0[l]
xyz2_0[2]
V2_0[0] =
V2_0[l] -
V2_0[2] -
return 0;

(v2_0/radius2)*(-rad_vec2[0]*ss2
(v2_0/radius2)*(-rad_vec2[l]*ss2
(v2_0/radius2)•(-rad_vec2[2]»ss2

rad_vec2[0]; // center of circle
rad_vec2[l];
rad_vec2[2];
rad_vec2[0]«cs2
rad_vec2[l]«cs2
rad_vec2[2]«cs2

rad_vec2_
rad_vec2_
rad_vec2_
rad_vec2_
rad_vec2_
rad vec2

[0]*ss2;
[l]»ss2;
[2]«ss2;
[0]»cs2);
[l]«cs2);
[2]»cs2);

case VK_F2: /« missile on arc to xyz_T2_max, aircraft flies straight «/
Time +- dT;
ss aircraft ■-■--— —:' ' - //
xyzl_0[0] +-■ dT«Vl_0[0];
xyzl_0[l] +- dT»Vl_0[l];
xyzl_0[2] +- dT«Vl_0[2];
// missile //
v2_0 -(float) sqrt(V2_0[0]*V2_0[0]+V2_0[l]»V2_0[l]+V2_0[2]»V2_0[2]);
cross2[0] - V2_0[l]»(xyz_T2_max[2] - xyz2_0[2]) -

V2_0[2]*(xyz_T2_max[l] -xyz2_0[l]);
cross2[l] - V2_0[2]*(xyz_T2_max[0] - xyz2_0[0]) -

V2_0[0]«(xyz_T2_max[2] - xyz2_0[2]);
cross2[2] > V2_0[0]*(xyz_T2_max[l] - xyz2_0[l]) -

V2_0[l]*(xyz_T2_max[0] - xyz2_0[0]);
dist_sq2 - (xyz_T2_max[0] - xyz2_0[0])*(xyz_T2_max[0] - xyz2_0[0]) +

(xyz_T2_max[l] - xyz2_0[l])»(xyz_T2_max[l] - xyz2_0[l]) +
(xyz_T2_max[2] - xyz2_0[2])»(xyz_T2_max[2] - xyz2_0[2]);

radius2 - .5f*v2_0*dist_sq2/ (float)
sqrt(cross2[0]«cross2[0]+cross2[l]»cross2[l]+cross2[2]*cross2[2]);

W2[0] - V2_0[l]«cross2[2] - V2_0[2]»cross2[l]
W2[l] - V2_0[2]»cross2[0] - V2_0[0]«cross2[2]
W2[2] - V2_0[0]«cross2[l] - V2_0[l]«cross2[0]
w2 - (float) sqrt(W2[0]«W2[0] +W2[1]«W2[1] + W2[2]*W2[2]);
rad_vec2[0] - radius2*W2[0]/w2;
rad_vec2[l] - radius2»W2[l]/w2;
rad_vec2[2] - radius2*W2[2]/^f2; 7

rad_vec2_[0] - radius2«V2_0[0]/v2_0;
rad_vec2_[l] - radius2«V2_0[l]/v2_0;
rad_vec2_[2] - radius2»V2_0[2]/v2_0;
cs2 - (float) cos(v2_0*dT/radius2);
ss2 = (float) sin(v2_0*dT/radius2);
center2[0] - xyz2_0[0] - rad_vec2[0]; // center of circle
center2[l] - xyz2_0[l] - rad_vec2[l];
center2[2] = xyz2_0[2] - rad_vec2[2];
xyz2_0[0] - center2[0] + rad_vec2[0]«cs2 + rad_vec2_[0]»ss2;
xyz2_0[l] - center2[l] + rad_vec2[l]«cs2 + rad_vec2_[l]»ss2;
xyz2_0[2] - center2[2] + rad_vec2[2]*cs2 + rad_vec2_[2]«ss2;
V2_0[0] - (v2_0/radius2)«(-rad_vec2[0]«ss2 + rad_vec2_[0]»cs2);
V2_0[l] = (v2_0/radius2)»(-rad_vec2[l]»ss2 + rad_vec2_[l]»cs2);
V2_0[2] - (v2_0/radius2)*(-rad_vec2[2]»ss2 + rad_vec2_[2]»cs2);
return 0;

}
return 0;

case WM_CREATE:
//
// Create a rendering context and set a timer.
//
hdc - GetDC (hwnd);
SetDCPixelFormat (hdc);
hrc - wglCreateContext (hdc);
wglMakeCurrent (hdc, hrc);
InitializeRC ();
nTimer - SetTimer (hwnd, 1, 50, NULL); // milliseconds
return 0;

case WM_SIZE:
//
// Redefine the viewing volume and viewport once the program
// starts and again any time the window size changes.
//
glnWidth - (GLsizei) LOWORD (lParam);
glnHeight - (GLsizei) HIWORD (lParam);
gldAspect - (GLdouble) glnWidth / (GLdouble) glnHeight;

glMatrixMode (GL_PR0JECTI0N);
glLoadldentity ();
gluPerspective (30.0, gldAspect, 0.48, 48.0);
glViewport (0, 0, glnWidth, glnHeight);
return 0;

case WM_PAINT:
//
// Draw the scene.
//
BeginPaint (hwnd, &ps);
//DrawScene (hdc, vert_angle, horz_angle);
DrawScene (hdc);
EndPaint (hwnd, &ps);
return 0;

case WMJTIMER:
//
// force a repaint.
//
InvalidateRect (hwnd, NULL, FALSE);
return 0;

case WM_QUERYNEWPALETTE:
//
// If the program is using a color palette, realize the pallette
// and update the client area when the window receives the input
/s focus.
//
if (hPalette !- NULL) {

if (n - RealizePalette (hdc))
InvalidateRect (hwnd, NULL, FALSE);

return n;
} 8

break;

{

case WM_PALETTECHANGED:
//
// If the program is using a color palette, realize the palette
// and update the colors in the client area when another program
// realizes its palette.
//
if ((hPalette !- NULL) && ((HWND) wParam !- hwnd)

if (RealizePalette (hdc))
UpdateColors (hdc);

return 0;
}
break;

case WM_DESTR0Y:
//
// Clean up and terminate.
//
wglMakeCurrent (NULL, NULL);;- ._ :
wglDeleteContext (hrc);
ReleaseDC (hwnd. hdc);
if (hPalette != NULL)

DeleteObject (hPalette);
KillTimer (hwnd, nTimer);
PostQuitMessage (0);
return 0;

}
return DefWindowProc (hwnd, msg, wParam, lParam);

* SetDCPixelFormat sets the pixel format for a device context in
• preparation for creating a rendering context.
*
* Input parameters:
• hdc - Device context handle
*
• Returns:
* Nothing

void SetDCPixelFormat (HDC hdc)
{

HANDLE hHeap;
int nColors, i;
LPLOGPALETTE IpPalette;
BYTE byRedMask, byGreenMask, byBlueMask;

static PIXELFORMATDESCRIPTOR pfd -
sizeof (PIXELFORMATDESCRIPTOR),
1.
PFD_DRAW_T0_WINDOW |
PFD_SUPPORT_OPENGL |
PFD_DOUBLEBUFFER,
PFD_TYPE_RGBA,
24,

0, 0, 0, 0,

{

0, 0, 0.

};

0, 0,
0, 0,
0, 0,
32,
0,
0,
PFD_MAIN_PLANEJ
0,
0, 0, 0

// Size of this structure
// Version number
// change to PFD_DRAW_TO_BITMAP (to print)

// RGBA pixel values
// 24 bit color
// Rbits Rshift, Gbits Gshift, Bbits Bshift
// No alpha buffer
s/ No-accumulation buffer
// 32-bit depth buffer
// No stencil buffer
// No auxiliary buffer
// Layer type
// Reserved (must be 0)
// No layer masks

int nPixelFormat;

hPixelForraat - ChoosePixelFormat (hdc, &pfd);
SetPixelFormat (hdc, nPixelFormat, &pfd);

9

DescnbePixelFormat (hdc, nPixelFormat, sizeof (PIXELFORMATDESCRIPTOR), &pfd);

if (pfd.dwFlags & PFD_NEED_PALETTE) {
nColors - 1 << pfd.cColorBits;
hHeap = GetProcessHeap ();

(LPLOGPALETTE) lpPalette - HeapAlloc (hHeap, 0,
sizeof (LOGPALETTE) + (nColors « sizeof (PALETTEENTRY)));

lpPalette->palVersion - 0x300;
lpPalette->palNumEntries - nColors;

byRedMask - (1 << pfd.cRedBits) - 1;
byGreenMask - (1 << pfd.cGreenBits) - 1;
byBlueMask - (1 << pfd.cBlueBits) - 1;

for (i=0; i<nColors; i++) {
lpPalette->palPalEntry[i].peRed -

(((i >> pfd.cRedShift) & byRedMask) • 255) / byRedMask;
lpPalette->palPalEntry[i].peGreen -

(((i >> pfd.cGreenShift) & byGreenMask) • 255) / byGreenMask;
lpPalette->palPalEntry[i].peBlue -

(((i >> pfd.cBlueShift) & byBlueMask) • 255) / byBlueMask;
lpPalette->palPalEntry[i].peFlags - 0;

}

hPalette - CreatePalette (lpPalette);
HeapFree (hHeap, 0, lpPalette);

if (hPalette !- NULL) {
SelectPalette (hdc, hPalette, FALSE);
RealizePalette (hdc);

}
}

} // end of SetDCPixelFormat

/«
* InitializeRC initializes the current rendering context
*
» Input parameters:
* None
*
* Returns:
* Nothing
»/

void InitializeRC (void)
{

GLfloat glfLightAmbient[] - { O.lf, O.lf, O.lf, l.Of };
GLfloat glfLightDiffuse[] - { 0.7f, 0.7f, 0.7f, l.Of };
GLfloat glfLightSpecularf] - { O.Of, O.Of, O.Of, l.Of };

//
// Initialize state variables.
//
glFrontFace (GL_CCW);
//glCullFace (GL_BACK); // eliminate lighting of the back side of the polygon
//glEnable(GL_CULL_FACE);

glDepthFunc (GL LEQUAL);
glEnable (GL_DEPTH_TESrT);
/» The following two lines allow missile and cone to be transparent.

But the grphics slow down considerable, and the blendinhas a few glitches
glEnable (GL_BLEND); // for alpha blending
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
»/
glClearColor (l.Of, l.Of, l.Of, O.Of); // set background color to white
//glClearColor (.8f, .8f, .8f, O.Of); // set background color to white(grey)

//
// Add a light to the scene.
//
glLightfv (GL_LIGHT0, GL_AMBIENT, glfLightAilOient);

glLightfv (GL_LIGHTO. GL_DIFFUSE, glfLightDiffuse) ;
glLightfv (GL_LIGHTO, GL_SPECULAR, glfLightSpecular)
glEnable (GL_LIGHTING);
glEnable (GL_LIGHTO);

* DrawSurface draws a surface made of 4 cornered polygons
»
* Input parameters:
* rl_e_z[num_zeta+l][num_eta+l] an array of points defining the surface
* rl_e_z[i-Q][j-0] - Coordinates of first corner of i.j polygon
* rl_e_z[i-0][j-1] = Coordinates of second corner of i.j polygon
« rl_e_z[i-l][j-1] - Coordinates of third corner of i,j polygon
« rl_e_z[i-l][j-0] - Coordinates of fourth corner of i,j polygon

» Returns:
* Nothing
•/
void DrawSurface (float x^s-fnum-zeta+ljfnun-eta+l^-,- float y-sfnum^zeta+1][num_eta+l],

float z_s[num_zeta+l][num_eta+l], float T2_e_z[num_zeta+1][num_eta+l],
float accel_l[num_zeta+l][num_eta+l], float accel2[num_zeta+l][num_eta+l],
float accel_l_limit, float accel_2_limit)

{
int i.j;
float xO.yO.zO, xl.yl.zl, x2,y2,z2, x3,y3,z3;
GLfloat glfColor[4];

(j-1; j<-num_eta; j++)

(i-1; i<-num_zeta; i++)

for
{
for

{
xO - x_s[i][j];
yO - y_s[i][j];
zO - z_s[i][j];

xl - x_s[i] [j-1];
yl - y_s[i][j-l];
zl = z_s[i] [j-1];

x2 - x_s[i-l][j-l];
y2 - y_s[i-l][j-l];
z2 = z_s[i-l][j-l];

x3 - x_s[i-l][j];
y3 - y_s[i-l][j];
z3 - z_s[i-l][j];

l.Of;
O.Of;
O.Of;
l.Of;

//for(ic-0; ic<-3
//glfColor[0]
glfColor[0] -
glfColorfl] -
glfColor[2] -
glfColor[3] -
if (accel_l[i][j]
if (accel_2[i][j]
if (T2_e_z[i][j]

{glfColor[0] -
glfColorfl] -
glfColor[2] -
glfColor[3] -

}
glMaterialfv (GL_

ic++) glfColorfic] - glfColorsfl][ic];
.4f*T2_e_z[i-l][j-l]/T2_e_z[num_zeta/2][num_eta/2];/« Red •/

/<
/*
/»

Red
Green
Blue

l_limit) glfColor[l] - l.Of; //
.2_limit) glfColor[2] - l.Of; //

> accel.
> accel

-- O.Of)
O.Of;
O.Of;
O.Of;
O.Of;// Transparent, because surface

aircraft
missile

»/
*/
»/

accel
accel

limit
limit

point didn't converge

FRONT, GL_AMBIENT_AND_DIFFUSE, glfColor);

I

glBegin (GL_P0LYGON);
if (j < num_eta) // so 2 vectors below are both nonzero
// normal - (xl.yl.zl)-(xO.yO.zO) cross (x3,y3.z3)-(x0,y0.z0)
glNormal3f((yl-y0)*(z3-z0) - (zl-z0)*(y3-y0),

(zl-z0)*(x3-x0) - (xl-x0)»(z3-z0),
(xl-x0)*(y3-y0) - (yl-y0)»(x3-x0));

else // (x3.y3,z3) - (xO.yO.zO)
// normal - (xl.yl.zl)-(xO.yO.zO) cross (x2.y2,z2)-(x0.y0,z0)
glNormal3f((yl-y0)«(z2-z0) - (zl-zO Il(y2-y0),

(zl-zO)«(x2-xO)
(xl-x0)»(y2-y0)

glVertex3f(xO.yO.zO);
glVertex3f(xl,yl,zl);
glVertex3f(x2,y2,z2);
glVertex3f(x3,y3,z3);

glEnd ();

(xl-x0)»(z2-z0),
(yl-y0)*(x2-x0)).

} /» end of i loop »/
} /« end of j loop •/
glEnable(GL_NORMALIZE);

} /» end of function ■
// To make the surface normals length 1

/«
« DrawScene uses OpenGL commands to draw the missile and intercept surface
•
» Input parameters:
» hdc - Device context handle
* vert_angle - vertical viewing angle (up/down arrow keys)
* horz_angle - horizontal viewing angle (left/right arrow keys)
•
* Returns:
* Nothing
»/

//void DrawScene (HDC hdc, float vert_angle, float horz_angle)
void DrawScene (HDC hdc)
{

int ic, buffer_length, fin_i;
char buffer[200]; // for printing to screen
GLUquadricObj »glquad; // for the missile cylinder
float v2_0; // length of V2_0[]
float ci, si, vl, v2;
float los, dot_prod, delta_r;
float missile_length, cone_length;

float text_xmin - -l.Of;
float text_xmax - l.Of;
float text_ymin - -l.Of;
float text_ymax - -.5f;

// corners of black background box to put text on

GLfloat glfBlue[] - {O.Of. O.Of, l.Of, l.Of };
GLfloat glfYellow[] - {l.Of, l.Of, O.Of, l.Of
GLfloat glfColor[4];
GLfloat glfColors[8][4]

};

{{l.Of, O.Of, O.Of, 0.5f},
{O.Of, l.Of, O.Of, 0.5f},
{O.Of. O.Of, l.Of, 0.5f},
{O.Of, l.Of, l.Of, 0.5f},
{l.Of, O.Of, l.Of, 0.5f},
{l.Of, l.Of, O.Of. 0.5f},
{l.Of, l.Of, l.Of, 0.5f},
{O.Of, O.Of, O.Of, 0.5f}}

//
// Clear the color and depth buffers.
//
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // black background ????

glMatrixMode(GL_MODELVIEW);
glLoadldentity ();
glTranslatef (O.Of, O.Of, -2.Of);
// •

//
// Write TEXT and NUMBERS to screen
//

glPushMatrix();
glPushAttrib(GL_CURRENT_BIT);// Prevent cursor from being advanced each draw

glfColor[0] - O.Of;glfColor[1] - O.Of;glfColor[2] - O.Of;glfColor[3] - O.Of;
glMatenalfv (GL_FRONT, GL_AMBIENT_AND_DIFFI12i. glfColor);

glBegin (GL_POLYGON); // black background to draw white text on
g1Vertex3f(text_xmm, text_ymin, O.Of);
glVertex3f(text_xmin, text_ymax, O.Of):
glVertex3f(text_xmax, text_ymax, O.Of):
g1Vertex3f(text_xmax, text_ymin, O.Of),

glEnd ();

// SetTextColor(hdc, RGB(255,0,0)); // RGB(255,255,255) -white DOESN'T WORK ;
// SelectObject(hdc, GetStockObject(BLACK_BRUSH));// try to make black text. DOESN'T WORK
//SetSysColors(l, textcolor, blackcolor); // black text. PUT OUTSIDE LOOP
//SetBkColor(hdc, GetSysColor (C0L0R_WINDOW)); // see p 223 ;
//SetTextColor(hdc, GetSysColor (C0L0R_WINDOWTEXT)); // see p 223 f
Select0bject(hdc, GetStockObject(SYSTEM_FONT));
wglUseFontBitmaps(hdc, 0, 255, 1000); //Start at 0, 255 Glyphs, offset 1000
glListBase(1000); r
vl = (float) sqrt(Vl[0]«Vl[0]+Vl[l]*Vl[l]+Vl[2]«Vl[2]); '"
v2 - (float) sqrt(V2[0]«V2[0]+V2[l]«V2[l]+V2[2]»V2[2]);
dot_prod - V2_0[0]»(xyzl_0[0]-xyz2_0[0]) +

V2_0[l]»(xyzl_0[l]-xyz2_0[l]) + ,.
V2_0[2]»(xyzl_0[2]-xyz2_0[2]); |

delta_r » (float) sqrt((xyz2_0[0]-xyzl_0[0])*(xyz2_0[0]-xyzl_0[0]) + i
(xyz2_0[l]-xyzl_0[l])«(xyz2_0[l]-xyzl_0[l]) +
(xyz2_0[2]-xyzl_0[2])«(xyz2_0[2]-xyzl_0[2]));

los - (float) acos(dot_prod/(v2«delta_r)); |
buffer_length - sprintf(buffer, I
"Time-*4.1f x2(0)-xl(0)-(X4.If '/A. If '/A. If) Vl(0) = (*4.1f '/A. If *4.1f) V2(0)«(X4.1f %4.1f

X4.1f) v2/vl-X4.2f >? X4.2f error-*4.2g",
Time, dx0[0],dx0[l],dx0[2], V1[0],V1[1],V1[2], V2[0],V2[1],V2[2], v2/vl, 1.0f/(.724f*(1.01f-s

in(los/2.0f))), rl_error);
//glColor3f(O.Of, O.Of, O.Of); // tried to make text black
//glTranslatef (O.Of,12.Of, O.Of); // locate cursor DOESN'T WORK
glCallLists(buffer_length, GL_UNSIGNED_BYTE, buffer); r

I.
glPopAttrib();
glPopMatrix(); $■■
/* ./ \
// fc
// Position the model relative to the viewpoint.
// r

glTranslatef (O.Of, O.Of, -35.Of); // move the origen away from viewer, into the screen \-
glRotatef (horz_angle, l.Of, O.Of, O.Of); fe
glRotatef (vert_angle, O.Of, l.Of, O.Of);
glTranslatef (-mid_pöint[0], -mid_point[1], -mid_point[2]); // center midpoint
// t
// Draw the missile ||
//
glPushMatrix();
glTranslatef (xyz2_0[0], xyz2_0[l], xyz2_0[2]); // location of missile f,:
vl_0 - (float) sqrt(Vl_0[0]«Vl_0[0]+Vl_0[l]»Vl_0[l]+Vl_0[2]»Vl_0[2]);// v2/vl printed
v2_0 - (float) sqrt(V2_0[0]«V2_0[0]+V2_0[l]«V2_0[l]+V2_0[2]»V2_0[2]);
glRotatef((float) (-(180/pi)*atan2(V2_0[1],V2_0[2])), l.Of, O.Of, O.Of);// -phi
glRotatef((float) ((180/pi)«asin(V2_0[0]/v2_0)), O.Of, l.Of, O.Of); // -theta
// Now missile along z axis (tail at xyz2_0)
missile_length » 1.5f;
cone_length - 15.Of;
glTranslatef(O.Of, O.Of, -(missile_length + .6f)); // length (so nose at xyz2_0)
// t.
//fins >
for(ic-0; ic<-3; ic++) glfColor[ic] - glfColors[l][ic];
glMaterialfv (GL_FR0NT, GL_AMBIENT_AND_DIFFUSE, glfColor);
for (fin_i=0; fin_i<3; fin_i++)
{

ci - (float) cos(2*pi»fin_i/3);
si - (float) sin(2*pi*fin_i/3);
glBegin (GL_P0LYG0N);

glNormal3f(si, ci, O.Of);
glVertexSf(ci*.2f, -si*.2f, .Of);
glVertex3f(ci«.4f, -si«.4f, .Of);
glVertex3f(ci».4f, -si».4f, .5f);
glVertex3f(ci*.2f, -si«.2f, .7f);

glEnd ();
/* end of fin_i loop •/ 13

//
for(ic-0; ic<«3; ic++) glfColor[ic] - glfColors[4][ic];
glMaterialfv (GL_FR0NT, GL_AMBIENT_AND_DIFFUSE, glfColor);
glquad - gluNewQuadric();
//
gluCylinder(glquad, .2, .2, missile_length, 12,1);//B0DY: name,radl,rad2, length,nDiv,stacks
//
gluQuadricOrientation(glquad, GLU_INSIDE);
gluDisk(glquad, .0, .2, 12, 1); //TAIL

glTranslatef(O.Of, O.Of, missile_length);
gluQuadricOrientation(glquad, GLU_OUTSIDE);
gluCylinder(glquad, .2, .0, .6, 12, 1); //NOSE
glTranslatef(O.Of, O.Of, .6f); // origen is back at xyz2_0
//
gluDeleteQuadric(glquad);
//
glquad = gluNewQuadric();
if (big_cone -- 1)

{ // draw cone with eta2 such that (vl/v2) - sin(eta2)/eta2
if (eta2_kl > 1.5708) // so half-cone is pointing in V2 direction

{
glTranslatef(O.Of, O.Of, -cone_length);
gluCylinder(glquad,cone_length*tan(-eta2_kl),0,cone_length,24,l);
glTranslatef(O.Of, O.Of, cone_length);
}

else
{
gluCylinder(glquad,0, cone_length*tan(eta2_kl), cone_length,24,l);
}

}

if (big_cone -» 2)
{ // draw cone with eta2 such that (vl/v2) - (sin(eta2)/eta2)«sin(eta2 - los)
if (eta2c > 1.5708) // so half-cone is pointing in V2 direction

{
glTranslatef(O.Of, O.Of, -cone_length);
gluCylinder(glquad,cone_length»tan(-eta2c),0,cone_length,24,l);
glTranslatef(O.Of, O.Of, cone_length);
}

else
{
gluCylinder(glquad,0,cone_length»tan(eta2c),cone_length,24,1);
}

}

//
gluDeleteQuadric(glquad);
glPopMatrix();

if (big_cone -- 2)
{
// Draw a small sphere at (ellipsoid, cone) kiss point
glPushMatrix();
glTranslatef(xyzl_0[0], xyzl_0[l], xyzl_0[2]); // location of vehicle 1
glTranslatef(rl_kiss[0], rl_kiss[l], rl_kiss[2]); // location of kiss point
for(ic-0; ic<-3; ic++) glfColor[ic] - glfColors[4][ic];
glMaterialfv (GL_FR0NT, GL_AMBIENT_AND_DIFFUSE, glfColor);
glquad - gluNewQuadric();
//
gluSphere(glquad, .2, 10, 10); // : name, rad ,slices, stacks
gluDeleteQuadric(glquad);
glPopMatrix();
}

// Draw a small black sphere at expected intercept point
glPushMatrix();
glTranslatef(xyz_T2_max[0], xyz_T2_max[1], xyz_T2_max[2]); // location of intercept
for(ic-0; ic<-3; ic++) glfColor[ic] - glfColors[7][ic];
glMaterialfv (GL_FR0NT, GL_AMBIENT_AND_DIFFUSE, glfColor);
glquad - gluNewQuadric();
//
gluSphere(glquad, .2, 10, 10); // : name, :14i »slices, stacks

gluDeleteQuadric(glquad) ;
glPopMatrix();

/. »/
//
// Draw the intercept surface (aircraft at indentation)
//

intercept2(xyzl_0,Vl_0, xyz2_0.V2_0,
&rl_error,T2_e_z, x_s,y_s,z_s, xyz_T2_max, accel_l, accel_2);

DrawSurface(x_s, y_s, z_s, T2_e_z, accel_l, accel_2, accel_l_limit, accel_2_limit);
/« »/
//
// Render the scene in the pixel buffer
//
SwapBuffers (hdc);

}
/• »/

void initialize_state(float xyzl_0[3],float xyz2_0[3],float Vl_0[3].float V2_0[3],
float dx0[3]. float Vl[3],float V2[3])

{
int ij; // to save initial aircraft»missile state

for(ij-0; ij<-2; ij++) // save initial aircraft,missile state
{
dxO[ij] - xyz2_0[ij] - xyzl_0[ij];
Vl[ij] - Vl_0[ij];
V2[ij] - V2_0[ij];
}

eta2_kl - cone2(Vl. V2);
} /» »/
float cone2(float Vl[3], float V2[3])
// Compute eta2 such that vl/V2 - sin(eta2)/eta2 - a + b»eta2 + c*eta2A2 + ...
{
float vl, v2, eta2_kl, y, w;
float a,b,c,d,6,f,g;
float C,D,E,F,G;

a - l.Of;
b - -a/(2.f»3.f);
c = -b/(4.f«5.f);
d - -c/(6.f*7.f);
e - -d/(B.f*9.f);
f - -e/(10.f»ll.f);
g - -f/(12.f«13«f);

C - -c;
D - 2*c«c-b»d;
E - -5»c»(c»c-b»d) - b*b»e;
F - 7«c«c»(2*c»c-3»b»d)+3*b»b»(d*d+2*c«e) - b»b«b»f;
G - 42*c«c*c«(2*b«d-c«c)-26*b«b»c«(d»d+c»e)+7«b»b»b»(d*e+c*f)-b»b«b»b»g;

vl - (float) sqrt(Vl[0]»Vl[0]+Vl[l]»Vl[l]+Vl[2]«Vl[2]);
v2 - (float) sqrt(V2[0]*V2[0]+V2[l]«V2[l]+V2[2]»V2[2]);
y = vl/v2;
w - (y-a)/(b«b);

/« invert the series for y - sin(x)/x »/
if (vl<v2) // so b«w > 0
eta2_kl - (float) sqrt(b*w»(l+C»w+D*w»w+E*w»w»w + F*w»w»w»w + 0»w«w*w*w«w));

return eta2_kl;
}

/» intercept2.c

gcc intercept2.c -Wall -lm

'/. This program plots the intercept surface for a missile pursuing an aircraft.
Z Mike Elgersma July 27, 1995 Mod for any VI Aug 20, 1995
'/.

15

X. For vehicle_l with (x in R~3) and initial velocity vector VI(0). the
V. locus of points that can be gotten to at time Tl. given any possible
X CONSTANT transverse acceleration is given by:
%
X || x - xl(0) ||-2 (|| (x - xl(0)) x V1(D) ||)
X. SI: • arctan() - Tl
X II (x - xl(0)) x V1(0) || ((x - xl(0)) . V1(0))
y.
y.
Z For vehicle_2 with (x in R^3) and initial velocity vector V2(0), the
'/. locus of points that can be gotten to at time T2, given any possible
'/. CONSTANT transverse acceleration is given by:
'/.
X || x - x2(0) ||-2 (|| (x - x2(0)) x V2(0) ||)
'/. S2: « arctan() - T2
y. II (x - x2(0)) x V2(0) || ((x - x2(0)) . V2(0))
y.
x
y. The intersection of surfaces SI and S2 gives the curve on which the two
X vehicles could meet at time Tl - T2.
'/.
y. The union of all such curves (union over all intersect times) gives a surface
y. on which all intercepts must occur.
X
'/. Use polar coordinates about xl(0),

X I V1_0] [cos (eta 1)]
'/. x - xl(0) » rl(etal,zetal)*[, Vl_0_perp]»[sin(etal)»sin(zetal)]
X [||V1_0||] [sin(etal)»cos(zetal)]
y.
y. <
'/. rl etal
XT1 •
'/. V1(0) sin(etal)

X r2 eta2
y. T2 - —
'/. V2(0) sin(eta2)
y.
X Set rl_old - 0
y. For etal - pi-eps to 0
'/. For zetal » -pi to pi
'/.
X rl2 - I x2(0) - xl(0) |
y. For iter - 1 to 4
'/. r2_over_rl2 - sqrt (rl_over_rl2*rl_over_rl2 - 2*cos_phi*rl_over_rl2 +1); //law of cosines
'/. eta2 - acos((cos_los+rl_over_rl2»cos_gam) / r2_over_rl2);// V2_unit dot x_rainus_x2_unit
'/. k_of_eta » kO * eta2 / sin(eta2);
y. rl_over_rl2 - k_of_eta * r2_over_rl2;
y. End iter
X
'/. End // zetal
X End // etal
X

rl2 - | x2(0) - xl(0) |
x2_minus_xl_unit - (x2(0) - xl(0)) / rl2;
v2 - |V2(0)|
V2_unit - V2(0) / v2;
vl - |V1(0)|
Vl_unit - V1(0) / vl
Vl_perp -
cos_los = - x2_minus_xl_unit dot V2_unit

For etal - pi-eps to 0
eel - cos(etal); sei - sin(etal);
kO - (vl/v2) • sin(etal)/etal;

For zetal - -pi to pi

czl - cos(zetal); szl - sin(zetal);
x_minus_xl_unit - [Vl_unit, Vl_perp]»(cel, sl61*szl, sel»czl)

cos_phi - x2_minus_xl_unit dot x_minus_xl_unit
cos_gam - V2_unit dot x_minus_xl_unit

rl_over_rl2 - 0; // initialize iteration
// Then iterate the following equations:
For ik = 1 to 4

r2_over_rl2 - sqrt(rl_over_rl2«rl_over_rl2 - 2*cos_phi»rl_over_rl2 + 1); //law of cosines "
eta2 - acos((cos_los+rl_over_rl2«cos_gam) / r2_over_rl2);// V2_unit dot x_minus_x2_unit
k_of_eta - kO » eta2 / sin(eta2);
rl_over_rl2 - k_of_eta * r2_over_rl2;

end // of ik loop

//Exit iteration with: '■
rl - rl_over_rl2 ■»■ rl2;
r2 « r2_over_rl2 * rl2;
T2 - (r2/v2) * eta2/sin(eta2);
x_surface - xl(0) + rl*(Vl_unit»cos_etal, Vl_perp*[sel*szl, sel»czl]);

end // zetal u
end // etal — - s
X \
«/
void intercept2(float xyzl_0[3], float Vl_0[3], float xyz2_0[3], float V2_0[3],

float »rl_error» float T2_e_z[num_zeta+1][num_eta+l], ;•
float x_s[num_zeta+l][num_eta+l], float y_s[num_zeta+l][num_eta+l], \
float z_s[num_zeta+l][num_eta+l], float xyz_T2_max[3],
float accel_l[num_zeta+l][num_eta+l],
float accel_2[num_zeta+l][num_eta+l]) \

{ 1

int i, j, k;

float rl, rl_e_z[num_zeta+l][num_eta+l]; I
float Vl_perp[3] [2], cross[3], norm; ''
float etal, zetal, eta2;
float Tl, T2, T2_max; f

// |
float rl2, r2_over_rl2. rl_over_rl2, rl_over_rl2_old;
float vl, Vl_unit[3];
float v2, V2_unit[3];)
float cos_los, cos_gam, cos_phi; I
float sei,eel, szl,czl;
float kO, k_of_eta;
float eta2c; // convergence test I
float x_minus_xl_unit[3], x2_minus_xl_unit[3]; |

rl2 - (float) sqrt((xyz2_0[0]-xyzl_0[0]) * (xyz2_0[0]-xyzl_0[0]) +
(xyz2_0[l]-xyzl_0[l]) • (xyz2_0[l]-xyzl_0[l]) + f'
(xyz2_0[2]-xyzl_0[2]) • (xyz2_0[2]-xyzl_0[2]));

x2_minus_xl_unit[0] - (xyz2_0[0]-xyzl_0[0]) / rl2;
x2_minus_xl_unit[l] - (xyz2_0[l]-xyzl_0[l]) / rl2;
x2_minus_xl_unit[2] - (xyz2_0[2]-xyzl_0[2]) / rl2;

v2 - (float) sqrt(V2_0[0]»V2_0[0] + V2_0[1]*V2_0[1] + V2_0[2]*V2_0[2]);
V2_unit[0] - V2_0[0]/v2;
V2_unit[l] - V2_0[l]/v2;
V2_unit[2] - V2_0[2]/v2;

cos_los - - x2_minus_xl_unit[0]*V2_unit[0]
- x2_minus_xl_unit[l]»V2_unit[l]
- x2_minus_xl_unit[2]»V2_unit[2]; j

vl - (float) sqrt(Vl_0[0]»Vl_0[0] + V1_0[1]«V1_0[1] + V1_0[2]»V1_0[2]);
Vl_unit[0] - Vl_0[0]/vl;
Vl_unit[l] - V1_0[1]/V1; >■
Vl_unit[2] - Vl_0[2]/vl; \

// form the first vector orthogonal to V1_0
if (fabs(Vl_0[0]) > .5»vl) <

{
Vl_perp[0][0] - -V1_0[1]/ ((float) sqrt(Vl_0[l]»Vl_0[l] + V1_0[0]»V1_0[0]));
Vl_perp[l][0] - V1_0[0]/ ((float) sqrt(V1_0 17]«V1_0[1] + V1_0[0]»V1_0[0]));

Vl_perp[2]f0] - O.Of;
}

else
{
Vl_perp[0][0] - O.Of;
Vl_perp[l][0] - Vl_0[2]/ ((float) sqrt(V1_0[2]«V1_0[2] + V1_0[1]«V1_0[1]));
Vl_perp[2][0] - -V1_0[1]/ ((float) sqrt(V1_0[2]»V1_0[2] + V1_0[1]«V1_0[1]));
}

// form the second vector orthogonal to V1_0
cross[0] - Vl_0[l]«Vl_perp[2][0] - Vl_0[2]»Vl_perp[l][0];
crossfl] « Vl_0[2]«Vl_perp[0][0] - Vl_0[0]»Vl_perp[2][0];
cross[2] = Vl_0[0]«Vl_perp[l][0] - Vl_0[l]«Vl_perp[0][0];
norm =■ (float) sqrt(cross[0]»cross[Q]+cross[1]»cross[1]+cross[2]«cross[2]);
Vl_perp[0][1] - cross[0]/norm;
Vl_perp[l][1] - cross[lj/norm;
Vl_perp[2][1] » cross[2]/norm;

T2_max - O.Of; // initialize
»rl_error - O.Of; // initialize

for (j-0; j<-num_eta; j++)
{ /» start eta at pi, where rl-0 is the correct answer */
etal -.(pi * (num_eta-j))/num_eta;
sei - (float) sin(etal);
eel » (float) cos(etal);
if (fabs(etal) < .0001) kO - vl/V2; // sin(etal)/etal - 1
else kO - (vl/v2) • (float) sin(etal)/etal;
for (i»0; i<»num_zeta; i++)

{
zetal - (2»pi » i)/num_zeta; ,
szl » (float) sin(zetal);
czl - (float) cos(zetal);

x_minus_xl_unit[0] - Vl_unit[0]»cel + Vl_perp[0][0]»sel«szl + Vl_perp[0][l]»sel»czl;
x_minus_xl_unit[l] - Vl_unit[l]»cel + Vl_perp[l][0]»sel»szl + Vl_perp[l][l]«sel«czl;
x_minus_xl_unit[2] - Vl_unit[2]»cel + Vl_perp[2][0]»sel»szl + Vl_perp[2][l]»sel«czl;

cos_phi- x2_minus_xl_unit[0] » x_minus_xl_unit[0] +
x2_minus_xl_unit[l] « x_minus_xl_unit[1] +
x2_minus_xl_unit[2] * x_minus_xl_unit[2];

cos_gam - V2_unit[0] » x_minus_xl_unit[0] +
V2_unit[l] * x_minus_xl_unit[1] +
V2_unit[2] • xjminus_xl_unit[2];

if (j<2)
{
rl = O.Of;
rl_over_rl2 - rl / rl2;
}

else
{
rl - rl_e_z[i][j-1]; /* last value (comprimise speed vs diverge) »/
rl - O.Of; // prevent divergence
rl - 2»rl_e_z[i][j-1] - rl_e_z[i][j-2]; /* linear interp (speedier) •/
rl_over_rl2 - rl / rl2;
}

for (k-1; k<-num_iter; k++)
{
rl_over_rl2_old - rl_over_rl2; // save old value for convergence test
r2_over_rl2-(float)sqrt(rl_over_rl2»rl_over_rl2-2»cos_phi»rl_over_rl2+ l);//law of cosines
eta2-(float)acos((cos_los+rl_over_rl2»cos_gam)/r2_over_rl2);//V2_unit dot x_minus_x2_unit
k_of_eta - kO • eta2 / (float) sin(eta2);
rl_over_rl2 » k_of_eta « r2_over_rl2;
} /» end of k loop »/

Tl - (rl_over_rl2_old«rl2/Vl) • etal/ (float)sin(etal);
T2 - (r2_over_rl2 «rl2/v2) » eta2/ (float)sin(eta2);

eta2c - (float) (3.14159 - asin(vl/v2) + acos(cos_los)) / 2;
//if ((fabs(Tl - T2) < .1) & (eta2 < eta2c)) // convergence test
if (fabs(Tl - T2) < .08) // convergence "lfet

{
rl - rl_over_rl2 » rl2;
T2_e_z[i][j] - T2;
}

else
{
rl - rl_e_z[i][j-1]; // no convergence, so use last value of radius
T2_e_z[i][j] = O.Of; // no convergence flagged. Later, set color - transparent

rl_e_z[i][j] - rl;
*_s[i][j] " xyzl_0[0] +

rl*(Vl_unit[0]»cel + Vl_perp[0][0]»sel*szl + Vl_perp[0][l]»sel*czl);
y-s[i][j] - xyzl_0[l] +

rl«(Vl_unit[l]»cel + Vl_perp[l][0]»sel*szl + Vl_perp[l][l]»sel*czl);
z_s[i][j] - xyzl_0[2] +

rl»(Vl_unit[2]«cel + Vl_perp[2][0]*sel»szl + Vl_perp[2][l]»sel»czl);

accel_l[i][j] - 2.f«etal • vl/Tl; // angle«radius - v»T» accel - v»v/radius '
accel_2[i][j] - 2.f«eta2 • v2/T2; —

if(T2_max < T2)
{
T2_max - T2;
xyz_T2_max[0] - x_s[i][j]; ;'
xyz_T2_max[1] - y_s[i j[j];
xyz_T2_max[2] - z_s[i][j];
}

if(*rl_error < fabs(rl_over_rl2-rl_over_rl2_old)*rl2) // 0 if converged X
{ *rl_error - (float)fabs(rl_over_rl2-rl_over_rl2_old)*rl2; }

} /* end of i loop */
} /» end of j loop */ i
} /* end of function intercept2 */

/. m/

void cross_prod(float cross[3], float vecl[3], float vec2[3])

{

crossfO] - vecl[l]*vec2[2] - vecl[2]«vec2[l];
crossfl] - vecl[2]*vec2[0] - vecl[0]»vec2[2]; <•
cross[2] - vecli0]«vec2[l] -.vecl[l]«vec2[0];

I

19

intercept_poly.m Mon Nov 20 19:13:47 1995 1

% intercept poly.m Mike Elgersma, Blaise Morton Sep 07, 1995
% -^ updated Sep 12, 1995
% Put in examples where the two solution components just touch. Nov 06, 1995
% Balanced coeff in order8_poly before calling "roots". Nov 07, 1995
% Factored order8_poly when it was the square of a 4th order poly Nov 07, 1995
% Plotted kiss point Nov 20' 1995

clear

h = figure('PaperPosition',[0.5,0.5,8,10])/ % So "print" gives large figure
dataset «= 13;
if (dataset==0)

% If [u,v,w]-[l,l,l] is a solution, then a+b=sqrt(3)=d+e+f and k*k«=l
% a = rand(l,l); b - sqrt(3)-a; % Cone_l coeff
% de - rand(2,l); def-[de;sqrt(3)-[1,1]*de] % Cone_2 coeff
% jc - 1- % Ellipsoid coeff

elseif (data3et-=l)
% Get all 8 solutions REAL for the following data.
% Only 2 solutions satisfy the HALFcone restriction to within ||err|| < .06
% Must comment out the recomputation of etal and eta2 inside the ii,jj loops.
ab0_0 - [6; 14; 0]; % Cone_l coeff. If a*b=0, then poly(u*2,vÄ2,w*2)
def_0 -= [3; 4; 7] ; % Cone_2 coeff
kO - 1.5; % Ellipsoid coeff
rl_ - [1;0;0];
r2_ - [-1;0;0];
etal - acos(l/norm(ab0_0));
eta2 - acos (l/norm(def_0')) ;
Vl_ - ab0_0; % times any scalar
V2_ - (def_0/norm(def_0)) * (norm(Vl_)*eta2*sin(etal)) / (k0*etal*sin(eta2));
%

elseif (dataset==2)
% Two eta half-cones intercept in 2 -circles
rl_ - [1;0;0];
r2_ - [-1;0;0];
Vl_ - [-1; .1; .3];
V2_ - [3; .2; .1];
%

% Note that datasets 3,4,5,6 have Vl_, V2_, and r2_ - rl_ nearly orthogonal
elseif (dataset==3)

% Solution-Sphere just smoothly merges with Solution-half-cone
rl_ = [0;0;0];
r2_ = [.10; 3.; -2];
Vl_ - [1.15; .1; .1]; % |V2|/|V1| - 3.113 < pi
V2_ = [.10; 2.; 3.];
%

elseif (dataset==4)
% Solution-Sphere just touches Solution-half-cone
rl_ - [0;0;0];
r2_ - [.10; 3.; -2];
Vl_ - [1.147; .1; .1]; % |V2|/|V1| - 3.121 < pi
V2_ - [.10; 2.; 3.];
%

elseif (dataset~5)
% Solution-Sphere just misses Solution-half-cone
rl_ - [0;0;0];
r2_ - [.10; 3.; -2];
Vl_ - [1.144; .1; .1]; % IV2|/|VI| = 3.129 < pi
V2_ - [.10; 2.; 3.];
%

elseif (dataset==6)
% Solution-Sphere just misses Solution-half-cone
rl_ - [0;0;0];
r2 - [.10; 3.; -2];

intercept_poly.m Mon Nov 20 19:13:47 1995 2

Vl_ - [1.14; .1; .1]; % |V2|/|VI| - 3.140 < pi
V2_ - [.10; 2.; 3.];
%

elseif (dataset«=7)
% Get 4 real and 4 complex solutions.
% The 4 real solutions satisfy the HALFcone restriction.
% Must comment out the recomputation of etal and eta2 inside the ii,jj loops.
ab0_0 « [-.6; 1.0; .0]; % Cone_l coeff. If a*b=0, then poly(uA2,vÄ2,wÄ2)
def_0 - [-.3; 1.3; .001]; % Cone_2 coeff
kO - 1.02; % Ellipsoid coeff
rl_ - [1;0;0];
r2_ - [-1;0;0];
etal - acos(l/norm(ab0_0));
eta2 - acos(l/norm(def_0));
Vl_ - ab0_0; % times any scalar
V2_ - (def_0/norm(def_0)) * (norm(Vl)*eta2*sin(etal)) / (k0*etal*sin(eta2));
%

elseif (dataset--»8) . •
% Random data in 5-dimensional set s
rl_ •= [1;0;0];
r2_ = [-1;0;0];
Vl_ - [rand(2,l); 0]; J
V2_ - rand(3,l); l
%

elseif (dataset««=9)
% Yearly Report values used in figures 1 to 8: >
rl_ - [0;0;0]; t
r2_ - [6; -5; 4] ;
Vl_ - [-.3; -.1; -.1];
V2_ - [-.2; 0; -.6]; >
% !

elseif (dataset=»=10)
% Try to find cases where "sphere" and "cone" touch i
rl_ - [1;0;0];
r2_ - [-1;0;0]; ;

tmp - rand{3,l);
Vl_ - [rand(2,l); 0]; '
V2_ - pi*norm(Vl_)*tmp/norm(tmp) ; % so v2/vl - pi £_
%

elseif (dataset-=ll)
% Put slow airplane almost behind fast missile |
rl_ = [1;0;0]; % airplane K
r2_ = [-1;0;0]; % missile
Vl_ - [rand(2,l); 0]; F
V2_ - [-3; .1; .2]; >
%

elseif (dataset==12)
% Degenerate back-substitution
rl_ - [1;0;0]; % airplane
r2_ - [-1;0;0]; % missile
Vl_ - [0; 1; 0];
V2_ - [0; 0; 1];
% ;

elseif (dataset==13)
% Solution set components just touch when:
% (norm(V2_)/norm(Vl_)) * (sin(eta_c)/eta_c) * sin(eta_c - los) - 1 f
% and etal - 1 at that point. *
r2_ - rand(3,1);% missile
rl_ «= rand(3,l);% airplane
v2 - rand; junk - rand(2,1); los - 1.4
V2_ - v2*[(rl_ - r2_)/norm(rl_ - r2_), null((rl_ - r2_)')] * ...

[cos(los); sin(los)*junk/norm(junk)];
% f
% los = acos(V2_'*(rl_ - r2_) / (norm(V2_)*norm(rl_ - r2_)))
%

intarceptjpoly.m Mon Nov 20 19:13:47 1995 3

% max [sin(eta)]
% V1/V2 < [* sin(eta - los)] for separate solution
% 0<los<eta<pi [eta] components

% (los) max [sin(eta)] los
%.724*(.99-sin()) < [*sin(eta - los)]<.724* (1.03-sin())
% (2) 0<los<eta<pi[eta] 2

vl_over_v2«=.724*(0.99-sin(los/2));%merged solution component for some unit_Vl
vl_over_v2=.724*(1.30-sin(los/2)); % separate solution components
vl_over_v2-.724*(1.01-sin(los/2)); %
Vl_dir - skew(r2_ - rl_)*skew(r2_ - rl_)*V2_; % perp to rl2 in [rl2,V2] plane
Vl_dir - Vl_dir + .001*rand(3,1); % planar data (degenerate order8_poly)
unit_Vl = Vl_dir/norm(Vl_dir);

Vl_ -= vl_over_v2*norm(V2_)*unit_Vl;
%

end

los «= acos (V2_' * (rl_-r2_) / (norm(V2_) *norm(rl_-r2_))) ;
% sin(2*eta2c - los) - vl_over_v2 at the max
eta2c - (pi - asin(vl_over_v2) + los)/2; % angle from V2_ to touch point
ratio»(norm(V2_)/norm(Vl_))*(sin(eta2c)/eta2c)*sin(eta2c-los)% > 1 separate sol

unit - (rl_ - r2_)/norm(r2_ - rl_);
Rot « [unit, null(unit')J;
Rot -= Rot*diag([l; 1; det(Rot)]);

stretch - 2/norm(rl_ - r2_);
orig - (r2_ + rl_)/2;
rl_3 "• stretch*Rot'* (rl_ - orig);
r2_s - stretch*Rot'*(r2_ - orig);
Vl_s - stretch*Rot'*Vl_;
V2_s - stretch*Rot'*V2_;

ca - Vl_s(2)/norm(Vl_s(2:3));
sa - Vl_s(3)/norm(Vl_s(2:3));
Rotx = [1, 0, 0;

0, ca, sa;
0,-sa, ca];

VI = Rotx*Vl_s; % •= [xxx,yyy, 0]
V2 •= Rotx*V2_s;

%
eps = .0013;
ii_max » 400
jj_max •» 100;
n_pts = ii_max*jj_max;
sol_set « zeros (3, 8*n__pts) ;
max sols •= 0; % max number of real solutions that satisfy HALF-cone
num root multl - 0;
num root mult2 - 0;
num root mult4 - 0;
num 0 sols - 0;
num 1 sols - 0;
num 2 sols - 0;
num 3 sols - 0;
num 4 sols -= 0;
num 5 sols - 0;
num 6 sols - 0;
num 7 sols = 0;
num_8_sols Mt 0;

for ii»0:ii max-1;
IX
for jj=0:j] _max-l;

intercept_poly.m Mon Nov 20 19:13:47 1995

% eta2 in outer loop, since eta2<eta2c «> solution component 1
eta2 - (pi)*ii/ii_max + eps; % eps avoids sin(0)/0
etal = (pi)*jj/jj_max + eps; %

a = abO(l)
d -= def (1)

abO - Vl/(norm(Vl)*cos(etal))
def - V2/(norm(V2)*cos(eta2)) ;
k- (norm(Vl)*eta2*sin(etal))/

(norm(V2)*etal*sin(eta2));
mil - d*d-l; m22 - e*e-l; m33
ml2 - d*e; m23 - e*f; ml3

b = ab0(2) ;
e - def(2); f def(3);

f*f-l;
f*d;

Ellipsoid - diag([-l,k*k,k*k-l,k*k-l]);
% .

% All polynomials are wrt to variable v.
v2 - 11/ 0, 0]; v4 - [1, 0, 0, 0, 0];
v6 - [1, 0, 0, 0, 0, 0, 0]; u0v8w0 - [1, 0, 0, 0, 0, 0, 0, 0, 0] ;

u2 - (l/(k*k))*[(l-k*k)*b*b, (l-k*k)*2*a*b, (l-k*k)*(a*a-l) + 1];
u4 - conv_(u2,„u2)i«6^ » convJuA, u2); u8v0w0 « conv(u4, u4) ;

w2 - [b*b-l, 2*a*b, a*a-l];
w4 = conv(w2, w2); w6 = conv(w4, w2); u0v0w8 = conv(w4, w4) ;

u6v2w0
u6v0w2
u0v6w2
u0v4w4

[u6, 0, 0]; u4v4w0 - [u4, 0, 0, 0, 0]; u2v6w0 - [u2, 0, 0, 0, 0,0, 0] ;
conv(u6,w2); u4v2w2 «= [conv(u4, w2), 0, 0] ; u2v4w2 «=[conv(u2, w2), 0, 0, 0, 0];
[w2, 0,0, 0,0, 0,0] ; u4v0w4 = conv(u4,w4); u2v2w4 «= [conv(u2, w4), 0, 0] ;
[w4,0,0,0,0]; u2v0w6 = conv(u2,w6); u0v2w6 = [w6,0,0];

order8_poly
mllA4
m22A4
m33A4

3*mllA2*m22A2
3*mllA2*m33A2
3*m22A2*m33A2

2*<8*ml2A2*(ml2A2 - mll*m22) +
2*(8*ml3A2*(ml3A2 - mll*m33) +
2*(8*m23A2*(m23A2 - m22*m33) +

4*mllA2*(mll*m22 - 2*ml2A2
4*mllA2*(mll*m33 - 2*ml3A2
4*m22A2*(mll*m22 - 2*ml2A2
4*m22A2*(m22*m33 - 2*m23A2
4*m33A2*(m22*m33 - 2*m23A2
4*m33A2*(mll*m33 - 2*ml3A2

2*m23A2) - 4*mll*(m22*ml3A2 + m33*ml2A2
8*ml2*ml3*(2*mll*m23 - ml2*ml3)

4*(m22A2*(3*m33*mll - 2*ml3A2) - 4*m22*(mll*m23A2 + m33*ml2A2
8*ml2*m23*(2*m22*ml3 - ml2*m23)

4*(m33A2*(3*mll*m22 - 2*ml2A2) - 4*m33*(mll*m23A2 + m22*ml3A2
8*ral3*m23*(2*m33*ml2 - ml3*m23)

4*(mllA2*(3*m22*m33

*
*
*

*
*
*
*
*
*
+

+
*
+
*

u8v0w0
u0v8w0
u0v0w8
u4v4w0
u4v0w4
u0v4w4
u6v2w0
u6v0w2
u2v6w0
u0v6w2
u0v2w6
u2v0w6

+
+
+
+
+
+
+
+
+
+
+
+

u4v2w2 +

u2v4w2 +

u2v2w4;

I]

order8_poly - order8_poly / sqrt (order8_poly (1) * order8_poly (9)) ;

% Linear poly in uv, whose coeff are poly in u2,v2,w2:
uv0_coeff - mllA2*u4 + (4*ml2A2 + 2*mll*m22)*conv(u2,v2) + m22A2*v4 + ...
(-4*ml3A2+2*mll*m33)*conv(u2,w2) + (-4*m23A2+2*m22*m33)*conv(v2,w2) + m33A2*w4;

uvl coeff - 4*(mll*ml2*u2 + ml2*m22*v2 - 2*ml3*m23*w2 + ml2*m33*w2);

v - zero3(8,l); u - zeros(8,1); w = zeros(8,1);
x = zeros(8,1); y - zeros(8,1); z = zeros(8,1);
%
% If the data is planar the 8th order poly factors.
% If 8th order polynomial is the square of a 4th order poly, nroot3n may crash
%

intercept_poly.m Mon Kov 20 19:13:47 1995 5

[order4_poly, err_j>4] - factor_poly(order8_poly);
if (err_p4 < .005)

[order2_poly, err_p2] - factor_poly(order4_poly);
if (err_p2 < .005)

root_multiplicity » 4;
v_quad - root3(order2_poly);
for iv«l:2;

v(4*iv-3) - v_quad(iv);
v(4*iv-2) «= v_quad(iv);
v(4*iv-l) - v_quad(iv);
v(4*iv-0) - v_quad(iv);

end
else

root_multiplicity « 2;
v_double - roots(order4_poly);
for iv»l:4;

v(2*iv-l) - v_double(iv);
v(2*iv-0) » v_double(iv);

end
end

else
root_multiplicity »1;
v - roots(order8_poly);

end
%

if (root_multiplicity <» 4)
for j - 1:8

u(j) - -polyval(uvO_coeff,v(j)) / (v(j) * polyval(uvl_coeff,v(j)));
end

else
for j - 1:4
u(2*j-l) - sqrt(polyval(u2,v(2*j)));
u(2*j) - -sqrt(polyval(u2,v(2*j)));

end
end

if (root_multiplicity ~ 1)
for j - 1:8

% Linear poly in w, whose coeff are poly in u,v,w2
w0_coeff - m33*polyval(w2,v(j)) + mll*u(j)Ä2 + 2*ml2*u(j)*v(j) + m22*v(j)A2;
wl_coeff - 2*{ml3*u(j) + m23*v(j)); % wl_coeff=0 (since f=0) for planar data
w(j) = -w0_coeff/wl_coeff;

end
elseif (root_multiplicity ™ 2)

for j - 1:4
w(2*j-l) - sqrt(polyval(w2,v(2*j)));
w(2*j-0) ■= -sqrt(polyval (w2,v(2*j)));

end
elseif (root_multiplicity «= 4)

for j - 1:2
w(4*j-3) - sqrt(polyval(w2,v(4*j)));
w(4*j-2) - sqrt(polyval(w2,v(4*j)));
w(4*j-l) - -sqrt(polyval(w2,v(4*j)));
w(4*j-0) » -sqrt(polyval(w2,v(4*j)));

end
end

for j - 1:8
% Bi-Rational transformation
x(j) - (u(j)+l)/(u(j)-l);
y(j) - 2*v(j)/(u(j)-l);
z(j) - 2*w(j)/(u(j)-l);

end
uvw = [u,v,w];

intercept_poly. Mon Nov 20 19:13:47 1995

xyz - [x,y,z];
n_sols - 0; % count how many of the 8
eps_err = .05;
for j=l:8
vec - [x(j)-l; x(j)+l; y(j); z(j)];
vec_l - [x(j)-l; y(j); z(j)];
vec_2 - [x(j)+l; y(j); z(j)];
err4 -= norm(vec 1) - k*norm(vec 2) ;

roots are real and satisfy HALF-cone

err5
err6

Vl'*vec_
V2'*vec"

cos(etal)*norm(Vl)*norm(vec
cos(eta2)*norm(V2)*norra(vec

% Ellipsoid is square of this,
1); % HALF cone_l
2); % HALF cone 2

%g %g %gf, err4, err5, err6)]) %disp([sprintf('err4, err5, err6
if({ abs(imag(xyz(j,l))) < .02 + .02*abs(real(xyz(j,1))))

(abs(imag(xyz(j,2))) < .02 + .02*abs(real(xyz(j,2))))
(abs(imag(xyz(j,3))) < .02 + .02*abs(real(xyz(j,3))))
(norm([err4,err5,err6])<eps_err))

sol_set(:, j + 8* (ii* jjjmax + jj)) •= xyz(j,:)';
n_sols ■= n_sols + 1;
if (root_multip.licityL - ==1) num_root_multl ■» num_root_multl
if(root_multiplicity ==2) num_root_mult2 - num_root_mult2
if(root_multiplicity —4) num_root_mult4 - num_root_mult4

else
sol_set(:, j + 8*(ii*jjjmax + jj)) - [0;0;0];

end
end

1;
1;
1;

end;
end;
end;

if(n sols —= 0) num 0 sols = num 0 sols + 1; end;
if(n sols -= 1) num 1 sols - num 1 sols + 1; end;
if(n sols ~ 2) num 2 sols - num 2 sols + l; end;
if(n sols » 3) num 3 sols - num 3 sols + 1; end;
if(n sols ~ 4) num 4 sols - num 4 sols + 1; end;
if(n sols asacs 5) num 5 sols «= num 5 sols + 1; end;
if(n sols == 6) num 6 sols ss num 6 sols + 1; end;
if(n sols HSSE 7) num 7 sols - num 7 sols + 1; end;
if(n sols ~ 8) num 8 sols - num 8 sols + 1; end;

if (n_sols > max_sols)
max_sols = n_sols
etal_max_sols •= etal
eta2_max_sols - eta2
multiplicity_sols - root_multiplicity

end

end % end of jj loop
end % end of ii loop %

max sols

% rotate and project
aa = -.37; bb= .34; cc
aa
S •

cc
.35;

-.45;
three small angles (radians)
three small angles (radians) .47; bb=-.44;

[0 cc -bb;
-cc 0 aa;
bb -aa 0] ; % skew symmetric

C - (eye(3)-S)/(eye(3)+S); % Cayley Transform from RA3 to SO(3)
sol_set_rot - C*sol_set;
soil - 8*jj_max*ii_max*eta2c/pi; % solution component 1
sol2 - 8*jj_max*ii_max; % solution component 1
plot(sol_set_rot(l,l:soll),sol_set_rot(2,l:soll), ' .') ;
hold on
plot(3ol_set_rot(1,1+soll:sol2),sol_set_rot(2,I+30II:sol2), '+');
dr «= r2_ - rl_;
title_txtl=sprintf('x2-xl=(%5.3f %5.3f %5.3f), ', dr(1),dr(2),dr(3));
title_txt2=sprintf('Vl=(%5.3f %5.3f %5.3f), ', Vl_(l), Vl_(2), Vl_(3))
title_txt3=sprintf('V2-(%5.3f %5.3f %5.3f)', V2_(l), V2_(2), V2_(3));
title([title txtl, title txt2, title txt3])

I
t.

intercept_poly.m Mon Nov 20 19:13:47 1995 7

delta_r - norm(rl_s - r2_s) * tan (eta2c - los);
kiss_point - C* (rl_s + delta_r*Vl/norm(Vl)); % in screen coordinates
plot(kiss_point(1), kiss_point(2), 'o')

airplane_tail - C*(rl_s - V1/.2);
airplane_nose » C*rl_s;
plot(airplane_nose(l), airplane_nose(2), 'o');
plot([airplane_nose(l),airplane_tail(1)],[airplane_nose(2),airplane_tail(2)]);

missile_tail - C*(r2_s - V2/.2);
missile_nose - C*r2_s;
plot(missile_nose(l), missile_nose(2), '*');
plot([missile_nose(1),missile_tail(1)],[missile_nose(2),missile_tail(2)]) ;

% The origin is midway between the airplane, rl_s=(1,0,0) and missile (-1,0,0)
axis([-1,2,-2,1]);
%axis([-3,3,-3,3]);
%axis([-5,5,-5,5]);
%axis([-10,10,-10,10]) ;
hold off

xlabeK'halfcone (etal) halfcone(eta2) ellipsoid(etal,eta2) 0<etal<pi 0<eta2<pi')
v2_over_vl - norm(V2_)/norm (Vl_) ;
v2_over_vl_touch - 1/ (.724*(1.01-sin(los/2)));
yt=sprintf('v2/vl = %3.2f, v2/vl_touch = %3.2f',v2_over_vl,v2_pver_vl_touch) ;
ytext2 - sprintfC los = %1.2f, max_sols -= %1.0f, los, max_sols) ;
ytext3 - sprintfC eta2c - %1.3f ', eta2c) ;
ytext4-sprintf('kiss_pt - xl + %5.3f * Vl_unit',delta_r/stretch);
ylabel([yt, ytext2, ytext3, ytext4])

% print

num_124_root_mult = [num_root_multl niam_root_mult2 num_root_mult4]

real_012345678_sols «= [num_0_sols nvim_l_sols num_2_sols num_3_sols
num_4_sols num_5_sols num_6_sols num_7_sols num_8_sols]

disp('num_124_root_mult * [1;1;1] - real_012345678_sols * [0;1;2;3;4;5;6;7;8]')

save intercept_pol_dat

vlv2_vs_los.m Fri Dec 22 16:23:36 1995 1

% vlv2_v3_lo3.m Mike Elgersma December 22, 1995
%
% See "Components of the Intercept Surface" in ecalm/nonlin/yearly_report.Oct95
% See "Components of the Intercept Surface" in ecalm/nonlin/yearly_report.Dec95
%
% Cone and ellipsoid just touch (double root) when vl/v2 - f(eta, los)
%
% For each value of los,
% 1) compute the max, wrt eta, of f(eta,los)
% 2) set max vl/v2 «= max f ,
% Plot max vl/v2 vs each such los.
% i
% Find smallest vl/v2 that causes accel_2 to hit some constraint:
% .. . T

% 2*v2*v2*sin(eta2) (
% accel_2 solve for r2 and plug into next equation:
% r2

% Intercept surface just touches constant accel_2 surface at: ;.
%
% sin(etal) VI { rl sin(eta2)} { ||(r_l-r_2)-r2*l_r2|| sin(eta2)}
% <= min { — } = min { „___} |
% etal V2 eta2 { r2 eta2) { r2 eta2 } !
%
% {II (cos(los)) (cos(eta2)) II) -
% {|| rl2*(sin(los)) - r2*(sin(eta2)) II sin(eta2)) i
% - min { —) €-
% { r2 eta2)
% f
% and rl2/r2 - accel_2 / accel_12*sin(eta2) where accel_12 - 2*v2*v2/rl2 \.
% 4

% sin(etal) VI { ||acel_2 (1) (cos(eta2-los) I I
% — « min { || (0) - sin(eta2)*(sin(eta2-los)) II / eta2 f
% etal V2 eta2 { |Iaccel_12 I I f
%
% < (accel_2/accel_12 - sin(los)) / los (set eta2 •= los)
% t
% t
h= figure('PaperPosition',[0.5,0.5,8,10]);. % So "print" gives large figure
epss = le-9; f
num_los =100; |
los_min = epss; los_max = pi-epss; % 0 < los < pi

los «■ zeros (l,num_los+l)
max_vl_over_v2..« zeros (l,num_los+l)
lower_bound — zeros(l,num_los+l)
middle — zeros(l,num_los+l)
difference - zeros(l,num_los+l)
upper_bound = zeros(l,num_los+l)
eta_at_max « zeros(l,num_los+l)
eta_at_max_ - zeros(l,num_los+l)
vl_over_v2_iter_con = zeros(l,num_los+l);
d_los = (los_max - los_min)/num_los;

accel - [.79, 1.0, 1.385];
min_vl_over_v2_accel « le9*ones(max(size(accel)),num_los+l);
eta_at_min_accel-zeros(max(size(accel)),num_los+l);

for i « l:num_los+l;
i
los(i) »= los_min + (i-l)*d_los;

% Find max vl/v2 for separate solution components. No acceleration limit,
for eta «= los (i) : .01 :pi-epss/2;

%

vlv2_v8_los.m rri Dec 22 16:23:36 1995 2

% max vl/v2 for separate solution components. No acceleration limit.
vl_over_v2 - (sin(eta)/eta) * abs(sin (eta - los(i)));
if (vl_over_v2 > max_vl_over_v2(i))
max_vl_over_v2(i) - vl_over_v2;
eta_at_max(i) «= eta;

end
%

end

% Find min vl/v2 that still hits acceleration limit on the pursuer.
% The min switches branches (of intercept surface) when vl/v2 - sin(los/2)
% avoid the 2nd branch (with eta2«=pi) by running eta2 from 0 to (los+pi)/2
for ia - l:max(size(accel)) ;
a •= accel (ia); % accel_2/(2*V2*V2/rl2);
for eta - epss:.01:(3*los(i) + pi)/4

%
vl_over_v2_accel=norm([a;0]-sin(eta)*[cos(eta-los(i));sin(eta-los(i))])/eta;
if (vl_over_v2_accel < min_vl_over_v2_accel(ia,i))
min_vl_over_v2_accel(ia,i) ■= vl_over_v2_accel;
eta_at_min_accel(ia,i) — eta;

end
%

%
end % end of eta loop
if (abs(sin(eta_at_min_accel(ia,i))) > a) % accel_2 > a2 when vl-0
min_vl_over_v2_accel(ia,i) - 0;

end
%
end % end of ia loop

%max vl/v2 ~«= .724* (1 - sin(los(i)/2));
%
lower_bound(i) - .724* (0.99 - sin(los(i)/2));
middled) - .724* (1.00 - sin (los (i)/2));
upper_bound(i) - .724*(1.03 - sin(los(i)/2));
%
differenced) - .033 * exp(-.8*los (i)) * sin(l. 6*los (i)) ;
%difference(i) - .015 * sin(2*los(i)) / (1+(los(i)/1.5)*6;
eta_at_max_(i) *= (pi - asin(max_vl_over_v2 (i)) + los(i))/2;
vl_over_v2_iter_con(i) - (sin (eta_at_max_(i))/eta_at_max_(i)) /
sqrtd + (l/eta_at_max_(i) - l/tan(eta_at_max_(i))) *2);

end

%plot(los,max_vl_over_v2, los,vl_over_v2_iter_con) % need max first
plot(los,max_vl_over_v2, los,upper_bound, los,lower_bound)
titleCmax vl/v2 that satisfies separate solution component bound')
ylabel('.724 (.99 - sin(los/2)) < vl/v2 < .724 (1.03 - sin(los/2))')
xlabel('los')
axis([0,pi,0,1])
pause

% plot(los,max_vl_over_v2 - middle, los,difference)
% plot(los, max_vl_over_v2-lower_bound)
% plot(los, max_vl_over_v2-upper_bound)

% plot(los(1:num_los),eta_at_max(1:num_los)-eta_at_max_(1:num_los))

plot(eta_at_max_,max_vl_over_v2, eta_at_max_, vl_over_v2_iter_con)
ylabeK'max vl/v2 separate solution. vl/v2 iteration converge')
xlabeK'eta at max')
pause

junk - zeros(max(size(accel)),num_los+l);
for ii « 1:max(size(accel))
for ij " l:num_los+l

vlv2_vs_los.m Pri Dec 22 16:23:36 1995 3

%junk(ii,ij) - min(accel(ii)/pi, (accel(ii) - sin(los(ij)))/los(ij));
junk(ii,ij) - (accel(ii) - sin(los(ij)))/los(ij) ;

end
end

%plot(los,sin(.5*los), los,min_vl_over_v2_accel, los,junk, los,max_vl_over_v2)
plot(los,max_vl_over_v2, los,min_vl_over_v2_accel)
titletextl - 'max vl/v2 to guarantee: (Solid) Separate sol components. ';
titletext2 - '(Dotted) accel2 < ';
titletext3 - sprintf('[%4.2f, %4.2f, %4.2f]', accel(1),accel(2), accel(3));
t itle([t itletext1, t itletext 2, t itletext 3])
ylabel('vl/v2 - min_over_e (|[accel2;0] - sin(e)*[cos(e-los);sin(e-los)]I / e)')
xlabel('los')
axis({0,pi,0,l])

save vlv2 vs los

Assessing The Impact of Estimation Errors
on Guidance Algorithm Performance

Thomas L. Ting

Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418

ABSTRACT

In this paper we focus on the interrelationship be-
tween state estimation filtering errors and their ultimate
impact upon guidance algorithm performance. We com-
pare the performance of proportional navigation guidance
and robust guidance versus fuel optimal guidance in a sim-
ple two-dimensional missile/target engagement. We find
that with perfect state estimation both proportional nav-
igation and robust guidance achieve small miss distances
and come very close to matching the ideal fuel optimum
response. However, in the presence of realistic state es-
timation errors their performance degrades sharply. We
explore the magnitude of this performance degradation
and its impact on overall missile system performance.

INTRODUCTION

In a typical missle system design active or passive
seeker information is input into a filter to obtain state
estimates of the position, velocity and acceleration of the
target. This information is then input into a guidance
algorithm which uses it and a knowledge of intercept dy-
namics to ultimately produce a missile acceleration com-
mand profile.

From our past experience with missile system de-
sign we have noticed a clear need for understanding the
impact of state estimation errors on guidance system per-
formance. These two subsystems are typically designed
independently by different engineers. The filter designer
attempts to obtain the best possible state estimates, op-
timizing a complex tradeoff between state estimation er-
rors, complexity of filter designs, input noise characteris-
tics and computing power requirements. Simultaneously,
the guidance law designer conducts his design assuming
that he will receive near perfect state information and as-
suming that his algorithm is implementable by existing
missile system hardware with little or no modification.
His main concern is to tradeoff fuel consumption versus
miss distance to achieve a satisfactory guidance law.

The main drawback of the above scenario is that al-
though the filtering and guidance subsystems are each de-
signed independently, the accuracy of the state estimates
has a large impact upon guidance law performance.

To illustrate this impact we will compare the per-
formance of three different guidance algorithms: fuel op-
timal guidance, proportional navigation guidance and ro-
bust guidance, using the simple two-dimensional guidance
problem shown in Figure 1. Here, the target and the mis-
sile are represented by point mass models where the target
is denoted by the letter T and the missile is denoted by
the letter M. The relative positions of the missile and tar-
get are represented with respect to a xy-coordinate frame
whose origin is always coincident with the location of the
target. In this coordinate frame the target has zero veloc-
ity and acceleration and is always located at the origin.
Conversely, the missile always begins a relative distance
from the target (origin) and is also moving relative to
the target (origin) with some velocity and acceleration.
To further simplify our example, we assumed no gravity
effects (i.e. an exoatmospheric engagement).

GUIDANCE ALGORITHMS

In this section we will briefly discuss details of the
three different guidance algorithms. The first algorithm,
fuel optimal guidance, is quite similar to bang-bang con-
trol and produces a theoretically achievable optimum level
of performance. The second algorithm, proportion navi-
gation guidance, is the most commonly used guidance al-
gorithm in practice today due to its combination of good
performance and easy implementation. The third algo-
rithm, robust guidance, is based on some recently devel-
oped ideas [Ting (1992)] designed to enhance the robust-
ness of the guidance algorithm to state estimation errors.
It requires more computation than proportional naviga-
tion guidance and has not been implemented in practice.
However, it has shown some good properties in some pre-
liminary simulation studies.

Fuel Optimal Guidance

To assess the performance impact of estimation er-
rors and different guidance algorithms on overall system
performance, it is important to quantify the optimum
achievable performance as a benchmark. In a realistic
missile system this requires hitting the target with a min-
imum of fuel expenditure, while simultaneously adhere-
ing to hardware imposed acceleration limits. To this end,
consider the linear system

y = vy (1)

v'y = a (2)

where the maximum achievable acceleration is con-
strained by a magnitude limit amax- The fuel opti-
mal guidance problem can now be formulated as follows:
Given any initial condition y(0) = y0 and tiy(0) = vv<>

and a fixed final time IF find the acceleration profile a(t)

which drives the system to the final condition y(tF) = 0
and vy(tF) — free while minimizing the cost functional

Jo
I «(0 II dt. (2)

This is a standard optimal control problem which
can be solved via a straightforward application of the
maximum principle [Athans and Falb (1971)]. The result-
ing optimal control law is an 'accelerate and coast' single
switch sequence of accelerations of the form (—omoi,0)
or (+amai,0) depending on where the initial condition
(yo,t>j,J lies in the (y, vy)-plane. The detailed optimal
control law is given by:

Case 1: If vu„ > '-*■■ thenv

«(«) -A- -1 for
0 for

0<t<t3

t3 <t<tF
(3)

where

z — {?Va-amaxtF)+s/{amaxtF - vl0)
2 - (2amaly0 + v\a)

(4)
and

V.. — 2
(5)

Case 2: If vyo = -^ then

z(*) = { 0 for 0 < i < tF } (6)

Case 3: If vVo < -f£ then

nn\-l +1 f°r 0<t<t. \
«(*)-(+0 f0T t,<t<tF)• (?)

where

z = (yy0+amaltF)-^/(ajnaltF + vl0)
2 - (vl„ - 2amaxy0)

(8)
and

*' = -T • (»)

It is clear that the fuel optimal guidance law is gov-
erned by the location of the initial condition (y0, vy

ative to the line
«ti. = --

tF

rel-

(10)

in the (j/,«y)-plane. If the initial condition lies on this
line then the optimal guidance law is zero acceleration
for all time because the vehicle is already on a homing
trajectory with the target. If the initial condition lies
above this line then the optimal guidance law is to apply
maximum negative acceleration from time t=0 until the
switching time t=t, and then to apply zero acceleration
for the duration of the flight. Finally, if the initial con-
dition lies below this line then the optimal guidance law
is to apply maximum positive acceleration from time t=0
until the switching time t=t, and then to apply zero ac-
celeration for the duration of the flight. Essentially, the

concept of this guidance law can be summarized as fol-
lows: Accelerate fully in either the positive or negative
direction (whichever is appropriate) until the zero effort
miss distance is zero and then coast in to hit the target.

Proportional Navigation Guidance

Proportional navigation is the most commonly used
navigation algorithm in practice today. In this algorithm!
the missile normal acceleration command is given by

aN = KXVC (11)

where K is a constant (typically between 2 and 5), X h
the rate of change of theline-qf-sighLangle between the,
missile and target and Vc is the relative closing velocity
between the missile and target. Mathematically, this al-
gorithm can be obtained by solving the following linear
quadratic optimization problem [Bryson and Ho (1973)].
Consider the linear system given in Equation(l) with ini-
tial conditions y(t0) = ya and vy(t0) = vyo. Suppose tF

is fixed and we want to find the acceleration profile a(t)
which minimizes the cost functional

■5(<*y(tF)2 + C2Vy{tF)2) + . a{tfdt. (12)

Given any set of constants c\ and c? we can easily solve
for the optimal acceleration a'(t) as a function of ci, c%,
y(i) and vy(t). If we modify the cost function J to em-
phasize only terminal position, i.e. we let c\ appro&eli
infinity and let a approach zero, then a'(i) reduces to
the proportional navigation control law.

Proportional navigation exhibits excellent perfor-
mance under ideal conditions. However, it does not ad-
dress some of the implementation issues which may arise
in a real life missile system application. For instance, in
pro-nav guidance the desired set of normal acceleration
commands is allowed to take on an unbounded, continu-
ous set of values. Clearly, no hardware implementation
can achieve infinite acceleration, so an excessively large
acceleration commands can produce temporary satura-
tions. Also, continuouly valued acceleration commands
are incompatible with the increasingly common ON/OFF
or discretely throttleable thrusters. This complication is
often treated by implementing corrective schemes such as
pulse-width modulation (PWM), to approximate a con-
tinuous signal by a sequence of discrete signals. The con-
sequences of such saturations and approximations will of
course be reflected in degraded performance.

Pro-nav guidance also does not address the issue of
minimizing fuel usage under imperfect conditions. In our
past experience, pro-nav guidance can be extremely sensi-
tive to estimation errors which may result in an excessive
amount of thruster activity. In simulation runs this is ev-
ident by near simultaneous firing of a thruster in opposite
directions, thus nearly nullifying the effect of both firings.
This phenomenon can be alleviated somewhat by passing

the pro-nav guidance command output through a dead-
zone filter. The size of the 'optimal' deadzone is typically
determined experimentally and is dependent upon other
characteristics of the overall system.

A Robust Guidance Algorithm

An approach for developing a robust guidance algo-
rithm was introduced in [Ting (1992)]. Despite its skele-
ton development, this algorithm is presented because it
demonstrates some of the potential performance improve-
ments available by incorporating system integration con-
siderations into subsystem design. The novel aspect of
this algorithm is that its acceleration command output is
directly affected by the magnitude of the state estimation

The robust guidance approach consists of three main
steps: 1) A Zero Effort Miss distance calculation, 2) A
computed miss distance error radius R to account for fil-
ter estimation errors and 3) A miss distance deadzone
concept. The Zero Effort Miss distance (ZEM) is com-
putable at any point in a missile-target engagement. It
represents the distance by which the missile will miss the
target assuming that the missile acceleration is zero for
the duration of its flight. For the robust guidance algo-
rithm concept, it is necessary to compute not only the
ZEM but also the sensitivity of the ZEM with respect to
the target state estimates of position, velocity and accel-
eration.

The main idea behind the robust guidance approach
is embodied in the miss distance deadzone concept. This
concept can loosely be stated as follows. Given the com-
puted ZEM and the error radius R, if the actual ZEM
could in fact be zero then do not change the course of the
missile. However, if the actual ZEM cannot be zero, then
output commands which place the missile on an intercept
trajectory with its target. In contrast to most guidance
algorithms which output acceleration commands, the ro-
bust guidance algorithm outputs commands in the form
of a velocity correction. The miss distance deadzone con-
cept can now be restated as follows. If the magnitude
of the computed ZEM is small then set the velocity cor-
rection to zero. If the magnitude of the computed ZEM
is large then set the velocity correction equal to a value
which should correct the ZEM to zero. In this algorithm
the boundary between large and small is governed by the
computed miss distance error radius R.

In this paper our robust guidance algorithm will
only be required to output y-component velocity correc-
tions. In this context, the miss distance deadzone concept
can be interpreted as shown in Figure 2. Here, the val-
ues along the horizontal zxis represent various values of
ZEM. For instance, suppose the computed value of ZEM
= ZEM0. If the computed miss distance error radius R
= Ri then the y-velocity component correction is set to
zero. However, if the miss distance radius R = R? then

the y-velocity component correction is set to £2£M •

THE IMPACT OF ESTIMATION ERRORS

To assess the relative performance of various guid-
ance algorithms we used a two-dimensional simulated en-
gagement between a missile and a target as described ear-
lier and as shown in Figure 1. The initial conditions of this
simulation were as follows. The missile and target began
100,000 units apart in the x-direction with a relative mis-
sile/target velocity of 10,000 units/sec in the x-direction.
We assumed that neither the missile nor the target were
accelerating in the x-direction and thus each simulation
run had a fixed duration of 10 seconds. The relative y-
displacement and velocity of the missile and target were
specified at the beginning of each simulation run. It was
assumed that the target had zero y-acceleration and the
missile y-acceleration was provided by the output of the
guidance algorithm.

We conducted two separate types of analyses. The
first type was called single run analysis and involved ana-
lyzing the performance of each of the guidance algorithms
based on miss distance and fuel consumption for the same
engagement scenario. The second type was called initial
condition system analysis and involved analyzing each of
the guidance algorithms based on the set of initial en-
gagement scenarios which were hittable given a fixed set
of system characteristics.

Single Run Analysis

We ran a variety of simulations of the engagement
described above using the fuel optimal, proportional nav-
igation and robust guidance algorithms described-earlier.
We shall describe our analysis for an engagement where
the initial relative y-displacement was -3000 units and the
initial relative y-velocity was 0 units/sec.

We first considered the case where the estimation
filter produced perfect state estimates. This gave us a
chance to assess how close the pro-nav guidance and ro-
bust guidance algorithms came to achieving the true 'op-
timal' solution. The results of these simulation runs are
summarized in Figures 3-4. Figure 3 shows the miss dis-
tance performance of all three algorithms. Clearly, they
all demonstrated acceptable performance in hitting the
target. Figure 4 shows the total amount of thruster firing
time for the duration of the simulation. As expected, the
fuel optimal guidance produced the minimum amount of
thruster firings. The robust guidance required roughly 6
percent more thruster firings while pro-nav guidance re-
quired roughly 11 percent more thruster firings.

The rationale behind the variations in fuel usage is
evident in Figures 5-7 which detail each of the three guid-
ance algorithms output acceleration commands. The opti-
mal fuel guidance output acceleration command is shown
in Figure 5. From this figure we can see that the fuel

optimal strategy is to turn on the thrusters initially for
as long as necessary to put the missile on an intercept
trajectory, i.e. drive ZEM to zero, and then shut them off
for the remainder of the run. Heuristically, this is clearly
the fuel optimal solution because a fixed amount of ac-
celeration change at the beginning of the run will result
in a much larger total position change over the course of
the run than the same amount of acceleration change ap-
plied at a later time. From Figures 6 and 7 we can see
that both the robust and pro-nav guidance algorithms
produce nonzero acceleration commands throughout the
latter stages of the run. It is interesting to note that
in this case the robust guidance acceleration profile more
closely matches the theoretical optimum than does the
pro-nav guidance acceleration profile. This is especially
true at the beginning of the run when the robusT guidance
law maintains full acceleration for a longer time than the
pro-nav guidance law. Consequently, the ZEM associated
with the robust guidance law is initially reduced faster
than the ZEM associated with the pro-nav guidance law.
This can be seen in Figure 4.

We next considered the case with imperfect state
estimates. This was accomplished by corrupting each of
the state values with random noise with zero mean and
standard deviation equal to 5 percent of the nominal state
value. The results of these simulation runs are summa-
rized in Figures 8-11. As seen in Figure 8, all three guid-
ance algorithms were still able to achieve an acceptably
small miss distance. However, from Figure 9 we can see
that the associated effort, i.e. thruster firings, increased
sharply over the perfect state estimation case. The es-
timation error caused the pro-nav guidance algorithm to
increase thruster firings by 40 percent while the robust
guidance algorithm increased thruster firings by 23 per-
cent. These increased firings are clearly evident in Figures
10 and 11 where we see persistent, near coincident, pos-
itive and negative thruster firings throughout the latter
stages of the run. Such firings nearly nullify each other's
effect and the resulting small net change in the missile's
trajectory indicate that the guidance law is overracting
to the state estimation error. In our example, the robust
guidance law is less sensitive to this error than the pro-
nav guidance law, and thus its performance degrades less
sharply. Nevertheless, by continuing to increase the mag-
nitude of the state estimation error, we can quickly reach
a situation where neither guidance algorithm is capable
of hitting the target.

Initial Condition System Analysis

An alternative and perhaps more meaningful ap-
proach to assessing the interrelationship between estima-
tion filtering errors and guidance algorithm performance
is to determine the impact of estimation errors upon the
set of initial conditions from which the desired target is
ultimately reachable. To demonstrate this approach, we
considered the system given in Figure 1 and assumed a
ten second flight time. We assumed that the target had

a radius of 2 units (thus we interpreted miss distances
of 2 units or less as a hit) and assumed that the vehicle
was equipped with enough fuel to provide six seconds of
maximum acceleration. Within this framework we used a
combination of analytical techniques and computer sim-
ulations to determine, for each guidance algorithm and
for a variety of estimation filtering error conditions, sets
of initial conditions which resulted in a successful target
intercept.

The overall results of our findings are shown in Fig-
ure 12. The area between each pair of lines represents
the sets of initial conditions from which our vehicle caa
reach the target in each of the following five situations:
1) Using the fuel optimal guidance law with no state es-
timation errors 2) Using the pro-nav guidaace4aw==with
no state estimation errors 3) Using the robust guidance
law with no state estimation errors 4) Using the pro-nav
guidance law with five percent state estimation errors 5}
Using the robust guidance law with five percent state esti-
mation errors. Due to the large scale involved the results
may be difficult to interpret.

To facilitate interpretation we displayed the fourth
quadrant of Figure 12 separately in Figure 13. For the
associated situation, each of these lines represents the the
boundary of the set of initial conditions from which the
missile can hit the target. From this diagram we can
see that even with perfect state information neither the
pro-nav nor the robust guidance law can match the per-
formance of the fuel optimal guidance law. For instance,
if the vehicle and target have zero initial relative cross-
range velocity then the fuel optimal guidance law exhibits
a crossrange intercept capability of 4,130 units. For the
robust guidance law and the pro-nav guidance law these
values are 4,030 units and 4,000 units respectively. These
"differences are relatively small with the robust guidance
law having only 2.42 percent less crossrange position ca-
pability given a zero initial crossrange velocity than the
fuel optimal guidance law. The pro-nav guidance law was
slightly worse with 3.15 percent less capability under these
same conditions. However, it should be noted that these
are best case results and that the crossrange intercept
performance gaps widen as the magnitude of the initial
crossrange velocity increases. For instance, if we assume
that the vehicle has an initial y-velocity of -200 units/sec
relative to the target then the fuel optimal guidance law
exhibits a crossrange intercept capability of 2,130 units.
For the robust guidance law and the pro-nav guidance law
these values are 2,035 units and 2,000 units respectively.
Thus, for this nonzero value of initial crossrange velocity
the performance gaps have increased to 4.46 percent less
crossrange position capability for the robust guidance law
than the fuel optimal guidance law and 6.10 percent less
crossrange position capability for the pro-nav guidance
law than the fuel optimal guidance law.

From Figure 13 it is clear that the performance of
both the pro-nav and the robust guidance algorithm are
both greatly affected by the presence of five percent state

estimation errors. In this case the robust guidance law
now has 15.25 percent less crossrange position capability
given zero initial crossrange velocity than the fuel optimal
guidance law. The pro-nav guidance law fares even worse
with 24.94 percent less crossrange position capability un-
der these same conditions. Similar to the results presented
with no state estimation errors, these are best case results
and the crossrange intercept performance gaps widen as
the magnitude of the initial crossrange velocity increases.

Comparison of Results

timates can severely degrade guidance law performance.
At the same time, the performance of the robust guid-
ance law demonstrates that it may indeed be possible to
improve upon the robust performance characteristics of
pro-nav guidance. We feel that future progress in solving
this problem lies with a better understanding of the inter-
relationship between the state estimator and the guidance
algorithm. This area is currently under further research.

REFERENCES

In both of the analyses presented above we saw that
the performance degradation of the pro-nav and robust
guidance laws due to state estimation error is very signif-
icant when compared to the performance gaps between
the pro-nav and robust guidance law and the fuel op-
timal guidance law with no state estimation error. We
discounted the results of any specific single run analysis
because the relative performance of the guidance algo-
rithms can differ depending on the specifics of the engage-
ment condition. However, we feel that the initial condi-
tion system analysis presents a relatively clear indication
of performance. From this analysis, note the three nearly
coincident lines in Figure 13, we can see that relatively lit-
tle performance (from the theoretical optimum) is lost in
implementing either the pro-nav or robust guidance algo-
rithm with perfect state information. Conversely, a large
performance gap exists when either algorithm is imple-
mented with a small level of state estimtion error.

The main intent for including the robust guidance
algorithm was not to advertise it as a replacement for pro-
nav guidance. Instead, it was included to demonstrate
that it is indeed possible to improve upon the performance
of pro-nav guidance in the presence of state estimation
errors. By illustrating the size of the performance gap
and the realistic possibility of closing this gap, we hope to
motivate further research along these lines. We feel that
the key to this and future improvement lies in exploiting
the interrelationship between estimation and guidance by
explicitly incorporating estimation errors into the robust
guidance algorithm.

CONCLUSIONS AND RECOMMENDATIONS

In this paper we have attempted to demonstrate the
significance of state estimation errors on guidance algo-
rithm performance. This was accomplished by comparing
the performance of pro-nav and robust guidance to ideal
fuel optimal guidance both with and without the presence
of state estimation errors. Even with perfect state infor-
mation neither guidance algorithm could achieve the the-
oretical optimum performance. However, the magnitude
of their suboptimality provided a good frame of reference
to assess the magnitude of performance degradation due
to imperfect state information.

Athans, M. and P.L. Falb, Optimal Control,
McGraw-Hill, New York, 1966.

Bryson, A.E. and Y.C. Ho, Applied Optimal Con-
trol, Halsted Press, New York, 1968.

Ting, T., 'On Developing a Robust Missile Guidance
Algorithm,' Proceedings of the 1992 American Control
Conference, Chicago, IL, June 1992, pp. 2380-2385.

Zarchan, P., Tactical and Strategic Missile Guid-
ance, AIAA, Washington D.C., 1990.

From our studies it is clear that imperfect state es-

1992ACC/TP7
On Developing a Robust Missile Guidance Algorithm

Thorn« L. Ting

Honeywell Systems and Research Center
3660 Technology Drive
Minneapolis, MN 55418

T"»"

_ in» ■ III *w<* Uuk
IM« h ttm r-

ABSTRACT Figure 1: Typical Missile Divert Control System

In this p»P«r we consider the problem of exoat-
mospherk missile/target engagemenU with imperfect
state information. We present a newly developed robust
guidance algorithm which schieres better hit performance
and less fuel consumption than a proportional naviga-
tion (pro-nav) guidance algorithm for certain engagement
scenarios. These preliminary results lead us to believe
that robust guidance algorithms can eventually be derel-
oped which will globally outperform existing guidance at
gorithms in dealing with uncertainties.

INTRODUCTION

This paper describes the preliminary develop-
ment of a robust guidance algorithm for use in exoat-
mospheric missile/target engagement problems. The pri-
mary motivation for our guidance research was twofold.
First, we wanted to develop an algorithm which was
straightforward to implement; i.e. a mTmniurn of ad-
hoc fixes and dependence on designer sk3L Second, we
wanted to improve upon the performance of a popular
existing algorithm, the proportional navigation (pro-nav)
guidance algorithm, both in terms of fuel consumption
and hit probabilities. Much of this effort was directed to-
wards improving upon the robustness of pro-nav guidance
algorithms, that is improving the performancein the face
of uncertainties. In our particular study theietmoÄain-
ties were characterised by errors in the state estimates
used by the guidance algorithms.

BACKGROUND AND MOTIVATION

The linear and rotational motions of a exoatmo-
spheric missile are typically controlled by firing thrusters.
The most elementary thrusters possess an ON/OFF char-
acteristic. More complicated thrusters are throttleable,
featuring a variable thrust level The attitude and di-
vert control thrusters are often subdivided into separate
groups with each group of thrusters controlled by separate
attitude and divert control systems. These systems are re-
sponsible for processing feedback information about the
cunent states of the missile relative to its desired target

and f««™-"g appropriate firing commands. For guidance
purposes, the divert control system ii crucial because it'
is responsible for controlling the non-rotational motion of
the missile.

A block diagram of a typical missile divert control
■ystem is shown in Figure 1, and its operation can be
tummarised as follows. At the beginning of each guid-
ance cycle, values of the angular rates of the vehicle and
filter estimates of the missile's linear position, velocity
and acceleration relative to the target model are fed back
into a guidance, algorithm. This algorithm processes this
information and generates a vector of desired linear accel-
eration commands. These linear acceleration commands
are then transformed into individual divert thruster com-
mands which are applied to each of the divert thrusters.

If we employ a standard pro-nav guidance algorithm
then the divert control system design is complicated by
the presence of ON/OFF divert control thrusters. Pro-
nav guidance algorithms are usually allowed to output
a continuous valued vector of linear acceleration com-
mands. This results in a continuous set of divert thruster
commands which are incompatible with ON/OFF divert
thrusters. This complication may be addressed by im-
plementing a scheme, such as pulse-width modulation
(PWM), which converts a continuous valued input vec-
tor of divert thruster commands mto an ON/QFF.valnied .
output vector of divert thruster commands.

Proportional navigation guidance also does not ad-
dress the issue of minimising divert thruster firings. In
our past experiences pro-nav guidance has on occasion
exhibited an excessive amount of divert thruster firing
activity. This phenomenon can be treated by appending
a deadsone filter to the divert control system. Such filters
process the guidance algorithm's output vector of linear
acceleration commands prior to their transformation into
individual divert thruster commands. The sise of the 'op-
timal' deadsone is typically determined experimentally.
Although this solution generally produces satisfactory re-
sults, we are not satisfied with the absence of a formal
design procedure for determining the sise of the deadsone.

Our objective in this paper is to describe the prelim-
inary development of a robust guidance algorithm which

t
i: t

2380

accomplishes four main goals in companion with a pro-
nav guidance scheme. First, it produces discrete rained
linear acceleration commands which are completely com-
patible with ON/OFF divert thrusters. Second, it aroids
the use of deadsones or determines them in an analytic
fashion. Third, it improves hit performance by making
the terminal miss distance more robust to filter estimation
errors. Finally, it reduces orerall divert fuel consumption.

A PROPOSED NEW ROBUST GUIDANCE
ALGORITHM

Main Ideas

We shall first explain the basic principles behind our
guidance algorithm. The technical details will be illus-
trated using a generic two dimensional guidance problem
later in this section.

The development of our guidance algorithm consists
of three main steps; 1) A miss distance calculation 2) A
miss distance radius due to filter estimate errors and 3)
A miss distance deadsone concept. At any point in a
missile/target simulated engagement we can compute the
Zero Effort Miss distance, ZEM. This represents the dis-
tance by which the missile wQl miss the target assuming
that the "'«"I* acceleration is sero, that is no external
effort (force) is acting upon the missile, for the duration
of its flight. For our guidance algorithm, we are inter-
ested in not only the Talue of ZEM, but also of the sensi-
tivity of ZEM with respect to our state estimates of the
relative H«»»T components of acceleration, velocity and
displacement. These sensitivities are useful because they
represent the incremental change in ZEM which will ac-
company a unit incremental change in each state.

As stated earlier, one of our foremost design objec-
tives is robustness to state estimation errors. Thus, in
addition to computing a single miss distance value ZEM,
we compute a miss distance radius R due to possible state
estimation error*. This radius R is computed as follows.
First, we determine a maximum magnitude filtering error
bound for each of the relative acceleration, velocity and
displacement states. Then, using the sensitivities of ZEM
with respect to these states, we compute the maximum
magnitude error in ZEM associated with the current val-
ues of the states. This maximum magnitude error is the
miss distance radius R.

The miss distance deadsone concept is very simple.
It determines the output of the guidance algorithm in the
form of a velocity correction. If the absolute value of the
computed miss distance ZEM is sufficiently small then the
velocity correction is set to sero. However, if the absolute
value of ZEM is large then a velocity correction is issued

ZEMr

-v- 4- -2EM
♦ R,

TT0S9ltt*J

Figure 2: Miss Distance Deadsone Concept

which should correct the ZEM to sero. In our algorithm
the boundary between large and small is given by the mist
distance radius R If the absolute value of ZEM is smaller
than R then the guidance algorithm outputs a velocity
correction of sero. However, if the absolute value of ZEM
is greater than R then the guidance algorithm outputs
a velocity correction which should correct the ZEM to
sero. Analytically, this is done by outputting a velocity
correction which is equal to the current ZEM divided by
the sensitivity of the ZEM with respect to the velocity
state variable under consideration.

In this paper we restrict our attention to outputting
only y-component velocity corrections. In this context,
the miss distance deadsone concept can be interpreted
as shown in Figure 2. Here, the values along the hori-
sontal axis represent various values of ZEM. Suppose the
computed value of ZEM is given by ZEM». If the miss
distance radius R is given by Ri then the y-velocity com-
ponent correction is set to sero. However, if the miss
distance radius R is given by Rj then the y-velocity com-
ponent correction is set to ■///£.

Algorithm Details

We will now illustrate the details of our guidance al-
gorithm using the generic two dimensional guidance prob-
lem shown in Figure 3. Here, the target and the missile
are represented by point mass models where the target
is denoted by the letter T and the missile is denoted by
the letter M. The-relative positions of the missile and tar-
get are represented with respect to a xy-coordinate frame
whose origin is always coincident with the location of the
target. In this coordinate frame the target has sero veloc-
ity and acceleration and is always located at the origin.
Conversely, the missile always begins with a negative x-
component and is represented by a relative distance from
the target (origin). The missile is also moving relative to
the target (origin) with some velocity and acceleration.
To further simplify our problem, we assumed no gravity
effects (Le. an exoatmospheric engagement) and that the
target maintained a constant acceleration.

Our guidance algorithm begins with a computation
of the Zero Effort Miss. This miss distance can be de-
fined in several different ways. For our two dimensional
problem we chose to define the ZEM as the distance be-
tween the target and the missile when the target crosses
the line x=0 (i.e. the y-component of the trajectory when

2381

T

Once if, has been computed the miss distance ZEM ii
given by the Talne of y at tt„ or

2000 trti

1<T
M H ynn nm tgita-

Figure 3: Two Dimensional Guidance Problem

it crosses the y-axis).

At any time t. let us denote the values of
the relatiTe z and y component» of acceleration«, ve-
locitie« and diatances of the missile and target by
a.«,»».,»..,«»..«, and f». Then assuming constant tar-
get accelerations and sero missile accelerations, the future
Talues of relative x and y components of accelerations,
Telocities and distances of the missile and target at any
future time f . + *I are given by

a.(t.-Mi) = «»•

a,(*. + »i) = «T.

(1)

(2)

*». = V*fe~
2s.

2J5.»/ = y(»,.) = y.+ «,.*,.+ .5o,.*J0. (10)

In addition to the miss distance ZEM we are also
interested in computing the sensitivities of ZEM with re-
spect to the relative x and y components of acceleration,
Telocity and displacement. Using equations 8-10 these
sensitivities can be computed in a straightforward fash-
ion to yield

(»)

AZEM dZEM
Ao,. dOya

= stj.

AZEM dZEM
A«T.

AZEM

dVym

dZEM

= *s.

= 1

(")

(12)

Ay. dy.

AZEM _ dZEM _ (vy. 4- o,.tt.)(g. + t..t„)
ASM dams a..(a..t„ + «..)

(is)

AZEM _ dZEM _ -(«,„ + a,.*,.)*,.
A»,. — dvM au(a..i,. + «H^

AZEM _ dZEM _ -(»,. + a,.«».)
As. ds. (aMt,. + »„) '

(14)

(15)

(16)

vm(t. + U) = «..+ / a.(«)d* = v^ + o^ti. (3)

,(. + *) = «,.+ / 0,(t)di = «,. + «,.1! (4)

s(x. + i) = s.+ / «.(t)di = s. + «-ti+.5«„<?

(5)

»(*. + *) = *•+/ *»(<)* - I» + *»•*! + -Be*.«?.

<«)

From these expressions we may compute the time
to go if.. This represents the length of time before the
missile - crosses the y-axis. Atany timer.ti this value is
given by solving the equation

s(t. +1,.) = *. + «..*,. + -B«.at5. = 0 (7)

for tf,. Two separate cases exist. If a*. > 0, that is if the
target is accelerating towards the missile, then

Let us denote our six state estimates by
e,y,v.,tfy,a^ and &,. We must first determine the mag-
nitude of possible estimation errors associated with each
of these six state variables. We denote these error magni-
tudes by As,Ay, A«s, A«y, Aa. and Aa,. In a true de-
sign problem these values could be determined iteratively
by beginning with initial guesses with future updating
baaed on actual simulation results. For our problem we
simply set the magnitude of each estimation error equal
to a fixed percentage of the corresponding state estimate.

From the state estimation error bound magnitudes
and the sensitivities given in Equations 11-16, the miss
distance radius R may be computed as

^+AZ£Jf . . ,-...., ..AZEM AZEM-j. R =t —jj-r— As |[+ || —j^— Ay || + || . . A«, j
A*

AZEM
A«.

At-Vi

Ay

AZEM
Ad.

Ao.

A«.

AZEM
A a,

A a,

(«)

Alternatively, if a». < 0, that is if the target is accelerat-
ing away from the missile, then

(17)
R represents the maximum possible uncertainty in the
magnitude of the ZEM due to state estimation errors.

The output of our guidance algorithm is an incre-
mental velocity change command, 6vv. As stated earlier,
we use a very elementary miss distance deadzone concept.
If the computed miss distance is less than R, then Svt is

C

2382

■et to lero. If not, then 6v, is commanded such that it
conecti the next computed mi« distance to lexo.
ematically, this is expressed as

f Oif
Sv- = < I'M

II ZEM ||<
if || ZEM \

R
l>R)

Math-

CIS)

A major difference between our guidance algorithm
and pro-nay guidance is the form of the commanded out-
put. Pro-nav guidance algorithms usually output linear
acceleration commands. Our guidance algorithm ouputs
linear Telocity incremental change command». That is,
instead of commanding acceleration in each linear direc-
tion, our guidance algorithm issues desired incremental
Telocity changes in each linear direction.

As described earlier, pro-naT guidance outputs are
often passed through deadsone niters which sero out all
input which fall below a specified threshold. In contrast to
previous ad-hoc methods, our guidance algorithm was de-
signed with an automated procedure to handle the selec-
tion of an appropriate deadsone threshold. This thresh-
old was selected such that our guidance algorithm output
incremental Telocity commands which were entirely com-
patible with ON/OFF thruster characteristics. This pro-
cedure operated as follows. Given the mass of the missile
and the guidance cycle rate we could compute the maxi-
mum linear Telocity change, Atwi achierable during a
«™E1«. guidance cycle. This Talue was then selected to be
the threshold of our Telodty deadsone filter. Thus, our
true guidance algorithm output is computed as follows:

Sty = I
Oif

A»

Sv, D< A«m»
if Svj > AtM

if Svf < — A»* }■
(19)

TWSMSHr.1

Figure 4: Block Diagram of Our New Guidance Al-

gorithm

that the ""«« distance deadsone is shutoff when t,o — 1
second, we want ZEM to be small enough such that it can
be reduced to sero in one second or less. The maximum
ZEM correction achieTable in time t is given by

AZEM = .5maz(arrKi..a. - a,.)*'- (20)

In our example AZEM was approximately 304s. Thus,
we want the ZEM to be less than 30 when t,o = 1 second.
Consequently, we set the upper bound on R to be 30i#o.

The lower bound on R was not computed analyti-
cally. We simply experimented with Tarious gains unitl
we found one we deemed satisfactory. For our example
we settled on a lower bound of 10tf».

A block diagram illustrating the full computations
of our new guidance algorithm is shown in Figure 4.

SIMULATION RESULTS

After preliminary testing with our guidance algo-
rithm some additional features were added to enhance
performance. First, the miss distance deadsone was shut-
off for the last second of the engagement. Whenerer t,.
was one second or less the Telocity correction was com-
puted according to the second expression of Equation 18
without regard to the inequality conditions. Second, the
miss distance radius R given by Equation 17 was sub-
ject to upper and lower bounds. The upper bound was
appended because we wanted to ensure that when tt»
reached one second, ZEM was sufficiently small so that
the missile could successfully intercept the target. The
lower bound was appended to ensure that R did not be-
come too small too quickly which could result in a ZEM
response which oscillates about sero.

The upper and lower bounds on R were set equal to
a constant multiple of *,.. The gain on the upper bound
was determined by the relative acceleration capabilities of
the missile and the target. For instance, since we know

We applied our new guidance algorithm to a two-
dimensional simulated engagement between a missile and
a target. The initial conditions of this simulation are
characterised as follows. First, the missile and target be-
gan 200,000 units apart in the x-direction and 2,000 units
apart in the y-direction. Second, the missile began with
an initial relative dosing Telocity of 20,000 units/sec in
the x-direction and 400 units/sec in the y-direction. Fi-
nally, the missile began with an initial relative accelera-
tion of 50 units/sec* in the x-direction and -30 units/sec3

in the y-direction. The initial relative acceleration in the
y-direction was derived from the fact that the target was
assumed to have a constant acceleration of 30 units/sec3

in the y-direction while the missile was given sero initial
acceleration in this direction.

We ran simulations of the engagement described
above using three different guidance algorithms. These
algorithms were standard proportional navigation, stan-
dard proportional navigation with a deadsone filter, and
an algorithm based on our new guidance scheme described
earlier. The sise of the deadsone augmenting the standard

2383

mmm

proportional navigation algorithm was »elected by trial
and error in an attempt to achieve a compromise between
good nit performance and minimal divert fuel usage.

The different guidance algorithms were compared on
their ability to perform in the »cenario described above.
Performance was characterised, by two main factors: ter-
minal miss distance and divert thruster ontime. These
measures were chosen because they address two main
questions regarding any missile engagement: 1) Did the
r,;^gr hit the target? and 2) How much fuel do we need
to put in the missile so that it can hit the target?

For comparison purposes we conducted two sets of
simulation run*. The first set of runs were conducted as-
suming no state estimation errors. The second set of runs
were conducted assuming * ten percent estimation error
in the relative x-distance between the missile and target.
We could have conducted simulation runs assuming es-
timation errors in more than one state, but we felt that
the two sets of runs described above were sufficient to
illustrate our result«.

The results of the first set of simulation runs (each of
the three guidance schemes run separately with no state
estimation errors) are shown in Figure 6. The simulation
results obtained using a proportional navigation guidance
algorithm are shown by the solid black lines. By append-
ing a deadsone to the proportional navigation algorithm
we obtained the simulation results shown by the small
dotted lines. Finally, the simulation results obtained us-
ing the guidance algorithm described in this paper are
shown by the medium dotted fines.

It is clear that with no state estimation errors, all
three guidance algorithms achiere comparable miss dis-
tance performance. In fact, the pro-nar guidance and the
pro-nav guidance with the added deadsone achiere nearly
identical miss distances. Our guidance algorithm results
in a slightly larger terminal miss distance, but this dif-
ference is almost negligible when compared to the sise of
most targets.

Conversely, the three guidance schemes differ g«»ü7
in the amount of divert thruster ontime. This is signifi-
cant because with ON/OFF divert thrusters the amount
of divert thruster fuel consumed is directly proportional
to the amount of thruster ontime. Since additional fuel
increases the weight of the missile which must be carried
into space, it is desirable to minimise the fuel require-
ments of the missile.

From Figure 6 it is evident that the pro-nar guidance
algorithm results in the largest dirert thruster ontime (di-
rert fuel consumption). This value is reduced (in our ex-
ample) by approximately fifteen percent by appending a
deadsone to the pro-nar guidance algorithm. However,
by implementing the our guidance algorithm it is possible

Figure 5: Simulation Results With No State Eatim».
tion Errors

to reduce dirert thruster ontime by more than fifty-five
percent as compared to a standard pro-nar guidance al-
gorithm. Thus, in this case our guidance algorithm eaa
greatly reduce the amount of dirert thruster activity witk
a very minimal impact upon miss distance performanee.
In fact, this inpact is so small that it probably would not
change the likelihood of hitting a target.

The results of the second set of simulation runs (each
of the three guidance schemes run separately with a ten
percent state estimation error in the relative x-distance
between the missile and target) are shown in Figure 6.
The results corresponding to the three different guidance
algorithms are indicated by the same type of lines de-
scribed for Figure 5.

In this »r«TTiplf the pro-nav guidance algorithm and
the pro-nav guidance with the appended deadsone again
achieve nearly identical miss distance performance. Un-
fortunately, both guidance algorithms result in a rela-
tively large terminal miss distance. The deterioration
in ™U« distance performance as compared to the simu-
lation with no state estimation errors indicates that nei-
ther of these two algorithms is particularly robust to state
estimation errors. By contrast, our guidance algorithm
achieves very good miss distance performance in spite of
this state estimation error. A comparison of Figures S and
6 indicates that the terminal miss distance performance

2384

mmmmmmmm

DlvwR tbnMCtr »tu

■
i

i
i

T
i

i
i

i

1
 J

i

» fttM — ■ 1—If

/ 4

• t 1 I

Figure 6: Simulation Results With Ten Percent X-
State Estimation Errori

of our guidance algorithm deteriorates very Ettle in the
pretence of this state estimation error.

It is also seen that the presence of the state esti-
mation did not affect the relative fuel consumption char-
acteristic of the three guidance schemes. The pro-nav
guidance algorithm again required the largest fuel con-
sumption, fallowed by the pro-nay guidance with the ap-
pended deadsone and finally our new guidance algorithm.
As before, appending the deadsone to the pro-nay guid-
ance algorithm reduced divert thruster ontime by roughly
fifteen percent, while our new guidance algorithm reduced
divert thruster ontime to roughly one half of the value as-
sociated with the pro-nav guidance algorithm. However,
in this case the new guidance algorithm not only achieved
greatly reduced fuel consumption in comparison with pro-
nav guidance, but also achieved a significant advantage in
terminal miss distance performance.

In the transition from the perfect information case
to the case with state estimation error, we note that the
fuel consumption associated with all three guidance algo-
rithms increased. This is expected because the presence
of state estimation errors leads to erroneous thruster com-
mands and subsequent thruster firings. In such situations,
fuel is wasted not only on these erroneous firings them-
selves, but in the firings which must be made to correct
the harmful effects caused by the erroneous firings. We

expect that on average as the magnitude of the state es-
timation errors increase, the percentage increase in fuel
consumption over the perfect information case will also
increase.

CONCLUSIONS AND RECOMMENDATIONS

We have explored some new ideas for developing
a robust guidance algorithm. These ideas were incorpo-
rated into a first cut version of a new guidance algorithm.
This algorithm performed favorably in a simulated mis-
sile/target engagement in comparison with two versions
of standard pro-nav guidance. However, we must cau-
tion that these results are engagement dependent and fa-
vorable results are not always obtained. In addition, at
though we were able to avert a majority of the ad-hoc pro-
cedures and ON/OFF thruster complications associated
with the pro-nav guidance algorithm, we were not able
to remove all of the ad-hoc procedures from our guidance
algorithm design, i.e. the selection of the lower bound on
B- Further research is needed to better understand the
full benefits and drawbacks of our ideas. It is our hope
that this paper may help to focus attention on this prob-
lem and stimulate research into the development of more
robust guidance algorithms.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. James Krause
of Honeywell SRC for his technical consultation. This
work was conducted under Honeywell SRC internal re-
search and development funding.

REFERENCE

Zarchan, P., "Tactical and Strategic Missile
Guidance,* Washington D.C., AIAA, 1990.

2385

L- SMS»

V\3 CPC

Fault Detection in the Presence of Modeling
Uncertainty *

Pramod P. Khargonekar t and Thomas L. Ting §

ABSTRACT

In this paper we describe a new approach for de-
tecting faults in systems in the presence of modeling un-
certainty. Our approach is interactive and relies on pro-
cessing true time domain system measurement data to
determine whether or not the system is operating within
an expected range of behaviors. Our results are appli-
cable to either open or closed loop systems and can be
implemented in a numerically efficient fashion.

INTRODUCTION

As today's state-of-the-art control systems (i.e. mil-
itary, aerospace, chemical processes etc.) become increas-
ingly complex the problem of fault detection is gaining in
importance. For many of these systems the presence of a
single undetected fault can lead to greatly reduced perfor-
mance or worse yet a catastrophic failure. Fault detection
algorithms attempt to determine when a system is oper-
ating outside of its range of expected behaviors. Once a
fault is detected various means exist to isolate the fault
and allow the system to operate at a suboptimal level.
Some control designs are sophisticated enough to achieve
optimal reconfiguration in the presence of a fault.

Modeling uncertainty and noise inputs both compli-
cate the problem of fault detection. For example, suppose
a control engineer possessed a perfectly accurate math-
ematical model of a system and suppose all the inputs
could be measured. Then the fault detection problem
may be solved through the following basic principle. If
the measured relationship between any two signals within
the system does riot agree with the relationship predicted
by the model then there must exist a fault in the system.

"Now suppose this same control engineer has a sys-
tem with either some unmeasurable noise inputs and/or

"Supported in paxt by the Airforce Office of Scientific Re-
search under contract no. AFOSR-F49620-92-C-0056
• Dept. of Electrical Engineering and Computer Science, The
University of Michigan, Ann Arbor, MI 48109-2122 Tel. No.
(313) 764-4328, Fax No. (313) 763-1503
» Honeywell Systems and Research Center, 3660 Technology
Drive, Minneapolis, MN 55418, Tel. No. (612) 951-7299, Fax
No. (612) 951-7438.

some level of modeling uncertainty. Due to the presence of
these uncertainties, it is clear that the principle described
above is no longer directly applicable to this problem.
In this case the job facing the fault detection algorithm
can be broken into two steps. First, it must determine
whether a discrepancy exists between the measured rela-
tionship between any two signals within the system and
the expected relationship predicted by the model. Sec-
ond, if a discrepancy does exist then it must determine
whether this information is truly indicative of a fault in
the system, or is simply the result of noise or modeling un-
certainty. Traditionally, fault detection algorithms have
been analyzed in a probablilistic setting to account for
random noise [2,3,4,6,10]. This probabilistic approach is,
however, difficult to use in the presence of unmodeled dy-
namics which is typically described in a deterministic set-
ting. Recently, fault detection problems in the presence
of unmodeled dynamics have been investigated [1,7,8,9].

In this paper we investigate a fault detection prob-
lem featuring significant modeling uncertainty due to un-
modeled dynamics. A typical example is unmodeled high
frequency dynamics. We develop a fault detection algo-
rithm that accounts for these unmodeled dynamics. Our
approach is closely related to the recent work on robust
identification as well as model validation [5,7].

MATHEMATICAL PRELIMINARIES

There exist a variety of mathematical concepts to
characterize the time and frequency domain behavior of
plants and their associated input/output signals. In this
section we briefly review those concepts which are perti-
nent to our discussion.

Signal and Operator Norms

Let £2" be the set of all square integrable functions
from [0,oo) to K"

£? = {«(*) : / uT{t)u{t)dt < 00}. (1)
Jo

For all signals u(t) in this set we may define the £2 norm

\\«h = Jj *T(tMt)dt. (2)

This norm can be interpreted as the "energy" in the signal
u(t). For a square integrable function u from (0, T) to Hn,
define the partial £2 norm as

|,(0.T) -u- T{t)u(t)dt. (3)

This norm represents the "energy" in the signal u(t) over
the time interval (0,T). To emphasize the most recent
signal information define a weighted partial £2 norm as

ll£T) -If: e«'-T)uT{t)u(t)dt. (4)

In this weighted norm all the past values of« are weighted
by a factor which decays exponentially as a function of
time. This limits the ability of accumulated past signal
values to dilute the effects of new information. The rate
of decay is controlled by the selection of the constant <r.

Modeling Uncertainty

Mathematical models are an attempt to analytically
represent the behavior of a true physical system. Control
designers rely heavily on such models in designing mod-
ern, high performance controllers. In reality, however,
true physical systems are never perfectly represented by
a mathematical model. Thus, it is important for a con-
trol engineer to design controllers which provide not only
good nominal performance but are also robust, i.e. which
perform well in spite of plant uncertainties.

One popular approach to synthesizing robust con-
trollers is to build uncertainty into the plant model. In
such cases, the plant is not represented by a single nom-
inal plant model, Po(s), but is instead allowed to be any
element in a family of plant models. One typical family
of plant models is given by

T={{I + AW(s))P0(s) : HAilco < Smax) (5)

where P0(s) is the nominal plant model, A represents an
unknown, linear, time-invariant, stable, proper, rational,
norm-bounded perturbation, and W(s) is a frequency de-
pendent weighting function which characterizes the rel-
ative magnitude of modeling uncertainty at various fre-
quencies. Typically, W(s) takes on larger values at higher
frequencies reflecting the inability to model accurately at
these frequencies. Here the bound, 6mal, on A is the £2-
induced operator norm which represents the maximum
amount of modeling uncertainty associated with T.

A KEY BOUND

In this section we describe a key time-domain bound
which forms the basis of our fault detection algorithm.
Consider the generic system shown in Figure 1. Here, the
input signal u and the output signal y are related by the
transfer function A(s) through the expression y = A(s)u.

Suppose that the magnitude portion of the fre-
quency response of A(s) has a frequency weighted bound.

In other words, suppose there exists a nonnegative real
function S(u) such that UA^'w)!^ < 8(u) for all frequen-
cies w. Moreover, suppose that S(u) is such that there
exists a rational, minimum phase, proper, stable func-
tion W(s) such that |W(j'u>)| = 6(u) for all frequencies
u. Then the system shown in Figure 1 can be redrawn as
shown in Figure 2 with A = AW where ||A||oo < 1.

Since || Ä ||e»< 1 then by definition

(6)

for any arbitrary time t. This inequality can be inter-
preted as follows. For any time t the energy of the output
of A over the interval (0, t) is smaller than the energy of
the input of A over this same interval.

More generally, suppose two signals v and y are re-
lated by a causal operator A such that ||A|| < 1 where
the norm on A is the £2induced norm. Then it is easy to
see that

»ll?°'°<ll l|2(0,t)
112 (?)

holds. Indeed, it has been shown in [7] that if A is allowed
to be linear time-varying, then this is a tight bound.

In real time fault detection algorithms, it is desirable
to discount past information. For instance, suppose A(J)

is a linear, time-invariant, proper, rational, stable func-
tion with no poles in Re(s) > —a. Moreover, suppose

||A||„ := sup
Rc(s)>-

<Wr(A(s)) < 1. (8)

Then it is possible to show using the weighted partial
norm that

for any arbitrary time t.

(9)

To facilitate implementation of either Equation (??)
or (??) in real-time fault detection algorithms, it is im-
perative to minimize computational and memory storage
requirements associated with finding the upper bounds.
For Equation (??) this is accomplished by defining

V(t) =|| „(r) ||
Jo

,<r(t-T) v(T)Tv(r)dr. (10)

Here V^t) is a monotonically increasing function of t and
its derivative is given by

^(r) = -,V(r) + «(r)>). (11)

Now V'(t-)-At) can be updated recursively by nu-
merically integrating Equation (??). This computation
requires only the most recent measurement value v(t), the
most recent computed value of V(t), the timestep Ai, and
the constant a. In addition to computational simplicity
this approach reduces memory requirements by eliminat-
ing the need to store all values of past measurements from
time zero to the present. The upper bound for Equation
(??) can be obtained by following a similar procedure.

FAULT DETECTION ALGORITHM

In this section we use the key bound described in the
previous section to develop our fault detection algorithm.
We first describe the general ideas behind our algorithm
and outline their implementation. Next, we address more
specific algorithm implementation issues such as select-
ing an appropriate fault detection threshold to account
for noise, modeling uncertainty and the tradeoff between
various error probabilities.

Algorithm Outline

We describe our algorithm in the context of a typi-
cal open loop system as shown in Figure 3. This system
contains a plant P, featuring multiplicative modeling un-
certainty, which is allowed to be any member of a family
of plants T described by Equation (??). For simplicity
we selected a weighting function W(s) such that 6mol is
normalized to one. In addition to modeling uncertainty,
the plant P also features an additive failure input signal
/. This signal is zero under normal plant operations and
is nonzero when the plant is operating in a failed state.
Each possible failure of the plant is associated with a dif-
ferent failure signal /. For example, if a system is subject
to three different types of failures, then there would be
three different failure input signals /i,/a, and fz. The
characteristics of each / are intended to replicate the im-
pact an associated failure would have on the plant. It is
assumed that the plant operator has complete knowledge
of all possible failure signals, but does not know which, if
any, signals are present at any given time.

The open loop system features a plant output mea-
surement y corrupted by additive measurement noise n.
Although individual values of n are unknown, we assume
that certain properties of n are known. For instance, n
may be represented by a stochastic noise model such as
a Gaussian distribution with zero mean and a fixed stan-
dard deviation. Alternatively, n could be represented by
a deterministic noise model. Here, n would not be de-
scribed through probability distributions but would in-
stead be restricted by deterministic constraints, such as
weighted £2 or £«, norms.

The central idea of our fault detection algorithm is
to use available signal measurements to analytically re-
construct the input and output signals to the .uncertainty
block A. This signal set is then examined using the key
bound from Equation (??) to determine whether or not
it complies with the apriori modeling assumptions on the
size of A. In particular, we check to ensure that the mea-
surement data could indeed have been generated by a per-
turbation of size Smax or less. With 6mol normalized to
1 our fault detection algorithm basically checks whether
or not the output signal, doul, of A has more or less en-
ergy than the input signal </,-„. If 6max were not nor-
malized then our fault detection algorithm could simply
check whether or not dout has more or less energy than
Smax times d,„.

From Figure 3, din = WP0r. This signal is con-
structable because the reference signal r and the trans-
fer functions W(s) and PQ(s) are all known. Constructing
d„ut is slightly more complicated. From Figure 3 we know
that the plant output measurement y is given by

y = P0r + &WP0r + f + n. (12)

Now define dout = AWP0r. Since / and n are unkno^
we approximate dout as

d„ut « y - P0r = dout + / + n. (13)

Assume that the noise signal n is zero. Then using
the signals described above we can detect the presence of
a fault by computing whether

y-P°r\\l™ - II WP0 \$°A< 0 = L,hr..h. (14)

If this inequality holds then d;„ has more energy than d^i
in the time interval [0, t]. This result is consistent with
an uncertainty block A of norm less than or equal to one,
and thus the fault detection algorithm concludes that no
fault is present. Conversely, if this inequality does not
hold then by analogous reasoning this result is inconsis-
tent with our modeling assumptions and the fault detec-
tion algorithm concludes that a fault must be present.

Operationally, this fault detection algorithm is im-
plemented in three steps. First, any desired r is input to
the true physical system and the resulting y is recorded.
Second, knowledge about r, P0, and W, is used to ana-
lytically compute P0r and WP0T. Third, the two norms
in Equation (??) are obtained recursively by numerically
integrating Equation (??).

A convenient method of checking the inequality in
Equation (??) is to display the difference

\\y-P0r\\l^-\\WP0rC* (15)

graphically as a function of time. By comparing this value
versus Lthrch we can easily see whether or not a fault
exists.

Thus far we have discussed our fault detection algo-
rithm only in the context of open loop systems. However,
the same results are directly applicable to closed loop sys-
tems, as shown in Figure 4, provided that the control
input u is measurable. If this condition holds then the
identical algorithm is applicable to closed loop systems
with the sole modification that the reference signal r is
replaced by the control input u. Thus, for the closed loop
system fault detection algorithm the input and output
signals associated with A are given by di„ = WP0u and
dout = AWPgU « y — P0u. All other aspects of the algo-
rithm remain unchanged. For the remainder of this paper
we will continue to discuss our fault detection algorithm
in the context of open loop systems noting that all results
are also applicable to closed loop systems.

In applications we recommend using the weighted
partial £2-norm instead of the standard partial £2-norm.

k

This substitution is allowable because for any plant P in
the family T, described by Equation (??), A is a stable
perturbation which implies that there exists some positive
a such that A(J) has no poles in Re(s) > — a.

Without the inclusion of the exponential forgetting
factor in the partial £2-norm, it is possible that a long
initial period of no fault performance could dilute the
ability of a fault associated transient to suddenly alter
the difference || y - P0T ||*

(CM1
 - || WPar |#°A

 . With
the exponential forgetting factor present, the most recent
data values are emphasized and this risk is lessened.

Threshold Selection

In reality, the threshold, Lthrcsh (currently zero),
on the right hand side of Equation (??), is too stringent
for practical applications. This value was derived under
the assumption that n is zero. Clearly, the presence of a
nonzero n will alter the energy in y, and hence the en-
ergy of the computed dout, commensurate with the noise
characteristics. To compensate, Lthrcsh must be raised,
with its ultimate selection dependent on the specific per-
formance requirements of the fault detection algorithm.

Fault detection algorithms are subject to two types
of errors: a False Alarm or a Missed Fault. A False
Alarm (FA) is an error which occurs when there is no
fault present in the system but the fault detection algo-
rithm mistakenly signals the presence of a fault. A Missed
Fault (MF) is an error which occurs when there is a fault
present in the system but it is not detected by the fault
detection algorithm. In our case, as is true with almost
all fault detection algorithms, the probability of either of
these errors is directly related to the value of Lthrcsh- We
would ideally like to simultaneously minimize both the
probability of a MF, (p(MF)), and the probability of a
FA, (p(FA)). However, such a minimization is impossi-
ble because as the value of Lthrcsh varies, there exists an
inherent tradeoff between p(MF) and p(FA).

No standard procedures exist to compare the rela-
tive importance of MF's versus FA's. In fact, their rel-
ative importance must be individually assessed for each
application. One can easily envision different scenarios
where MF's range from being critically important to op-
erationally acceptable. Indeed, unless a MF were truly
critical we certainly would not want to set Lthrcsh so low
that we are continually shutting down the system in re-
sponse to a slew of FA errors.

Regardless of the choice of Lthrcsh our fault detec-
tion algorithm will be unable to discern the difference be-
tween / and n. Thus, to completely eliminate the possibil-
ity of FA's our fault detection algorithm requires setting
Xthre.h = 2||n||2<,||<fm||2.7 + \W\\la. This value is obtained
by computing the maximum energy difference achievable
between dout and di„ given a noise input of energy ||n||2<r-

Conversely, completely eliminating the possibility of
MF's requires setting Lthrcsh to a negative number. From

Equation (14) such a value is intuitively unsettling be-
cause it requires that dout have a prespecified amount of
energy less than din in order for a fault not to be declared.

In reality the actual value of Lthrcsh will lie between
these two extremes. For an arbitrary value of Lthrcsh, we
would like to compute the minimum size of a fault / to
assure detection by our algorithm. After some algebraic
computations we find that all faults / such that

ll/lla« > ||n||3, + ||<i..t||2, + s/Lthr*.h + ||*»||L- (16)

are detectable by our fault detection algorithm. From this
equation it is clear that there are three key factors influ-
encing the detectability of various faults: 1) the energy
levels of the signals di„ and dout, 2) the energy levels of
/ and n and 3) the value of the threshold Lthrcsh.

We can interpret the results of Equation (16)
through a simple example. Suppose we have a case where
both ||<fm|| and ||<ioue|| are zero in steady state. Also, sup-
pose the two signals / and n have the same energy levels
and Lthrcsh is any nonzero number. Then it is conceiv-
able (although unlikely) that n could completely cancel
the signal / and it would appear as if no fault is present.
In fact, to mask the presence of an existing fault, n need
not completely cancel /, but it must only make it appear
as if the combined signal (n + /) has less energy than
Lthresh- Therefore, to guarantee that a failure can be
detected, the associated failure signal / must satisfy

11/11* »a« + y/Lt (17)

From this equation it is clear that as either the energy
level of n rises or Lthrcsh rises the energy requirements
of / to assure detection increases. This does not mean
that failure signals with less energy will not be detected.
However, it does mean that the probability of detecting a
fault associated with a fixed energy failure signal decreases
as either Lthrcsh or the energy in n increases.

AN EXAMPLE

We now demonstrate the operation of our fault de-
tection algorithm through an illustrative example. This
example is based on the open loop system model shown
in Figure 3. The plant model is represented by a family
of plants as in Equation (??) with a nominal plant model
given by P0(s) = 7^7 and uncertainty bound Smaz = 1.
The uncertainty block A consists of three high frequency
second order flex modes and is given by

200 200
: + -

200

s2 + 15s + 400 s2 + 10* + 1600 s2 + 10* + 4900
(18)

A frequency magnitude response plot of A is shown in Fig-
ure 5. Note that the magnitude response of A is below
unity for all frequencies so || A|| is indeed less than or equal
to 6mal — 1. The modeling uncertainty weighting func-
tion is given by W(s) = J++°°'. This function was chosen
to emphasize the modeling errors at high frequencies while

minimizing the errors at lower frequencies. The plant out-
put measurement y is corrupted by an unknown noise n,
and for our example we assume that ||n||2 < .0025.

For our fault detection algorithm we set Lthresh —
•5\\n\\io-\\di„\\2o- + |Jn[|2«r. This is an intermediate value of
Lihrcah which does not preclude the possibility of MF's,
but is also not extremely sensitive to FA's. Note also that
this is a time-varying threshold which is dependent upon
the computed values of di„. We ran a variety of time
domain simulations using a reference step input r of mag-
nitude 1.1. We used the data for r and y to construct
di„ and dout- Finally, the weighted partial £2-norms (en-
ergies), Ei„ and Eout, of each of these two signals were
computed using Equations (??) and (??).

In the first simulation we ran the system with no
faults present and obtained the time histories shown in
Figure 6. di„ (solid line) and dout (dotted line) are shown
in Figure 6a while Ei„ (solid line) and Eout (dotted line)
are shown in Figure 6b. Note that as di„ reaches its steady
state value about zero, the initial bump in Ein also decays
to zero. This is explicitly due to the exponential forget-
ting factor built into V(t). Figure 6c displays the weighted
partial energy of n. In a real system this value would not
be available, but in our simulation we measured this value
to ensure that our noise inputs adhered to our assump-
tions. Finally, the difference Eout — Ei„ (solid line) and
the threshold Lthrcsh (dotted line) are shown in Figure
6d. In this particular case the energy difference is always
below Lthreth so the fault detection algorithm correctly
concludes that no fault is present.

In the second simulation we configured the system
such that a "large" failure corresponding to a step input of
.11 would occur at time t = 2 seconds. The corresponding
results, presented in an analagous manner to Figure 6,
are shown in Figure 7. Note that the presence of the
failure signal / is clearly evident in dout and EMt for times
greater than 2 seconds. In this case the energy difference
shown in Figure 7d exceeds Lthresh almost immediately
after the fault has occured (at roughly t = 2.35 seconds)
so the fault detection algorithm very quickly and correctly
concludes that a fault is present.

In the third time domain simulation we configured
the system such that a "small" failure corresponding to a
step input of .03 would occur at time t = 2 seconds. The
corresponding results are shown in Figure 8. In this case
the deviations of dout and E0ut from the no fault present
case (Figure 6) are not as pronounced as. in the "large"
failure case (Figure 7). From the plots shown in Figure
8d we can see that it takes roughly three seconds after the
fault occurs before the energy difference exceeds Lthrcsh-
Thus, the fault detection algorithm correctly identifies the
presence of this smaller fault but not as quickly as it iden-
tified the larger fault.

CONCLUSIONS AND RECOMMENDATIONS

In this paper we have described a new time-domain
based algorithm for detecting faults in systems in the pres-

ence of modeling uncertainty. Our algorithm relies on
processing true time domain system measurement data
to analytically reconstruct key signals which characterise
the modelling uncertainty. These signals are compared
with apriori assumptions about the plant model to deter-
mine whether or not a fault is present. The algorithm
is easy to implement on either an open or closed loop
system and its use was demonstrated via a simple ex-
ample. Several critical implementation issues were also
addressed. An efficient numerical implementation of the
algorithm was presented which featured reduced memory
and computational requirements. In addition, a weighted
partial energy criteria was employed which ensures that
the algorithm emphasizes the newest data.

Certain crucial issues remain to be addressed. These
include 1) optimal threshold selection strategies and the
resulting tradeoff between False Alarm and Missed Fault
error probabilities and 2) detecting and discerning a single
failure from among a set of possible failures. These issues
are currently under investigation.

REFERENCES

1. Emami-Naeini, A., M. Akhter, and S. Rock,
"Effect of Model Uncertainty on Failure Detection: The
Threshold Selector," IEEE Transactions on Automatic
Control, Vol. 33, No. 12, pp. 1106-1115, 1988.

2. Friedland, B., "Maximum Likelihood Failure De-
tection of Aircraft Flight Control Sensors," Journal of
Guidance, Control and Dynamics, Sept.-Oct. 1982, pp.
498-503.

3. Isermann, R., "Process Fault Detection Based oa
Modeling and Estimation Methods-A Survey", Automat-
ica, Vol. 20, No. 4, pp. 387-404, 1984.

4. Kerr, T., "Decentralized Filtering and Redun-
dancy Management for Multisensor Navigation", IEEE
Transactions on Aerospace and Electronic Systems, Vol.
23, No. 1, pp. 83-119, 1987.

5. Krause, J. and P. Khargonekar, "Parameter Iden-
tification in the Presence of Non-Parametric Dynamic Un-
certainty", Automatica, Vol. 26, pp. 113-124, Jan. 1990.

6. Patton, R, P. Frank and R. Clark (Eds.), "Fault
Diagnosis in Dynamic Systems, Theory and Application",
Prentice Hall, 1989.

7. Poolla, K., P. Khargonekar, A. Tikku, J. Krause,
and K. Nagpal, "A Time- Domain Appraoch to Model
Validation", to appear in IEEE Transactions on Auto-
matic Control.

8. Smith, R. and J. Doyle, "Model Validation: A
Connection Between Robust Control and Identification",
IEEE Transactions on Automatic Control, Vol. 37, No.
7, pp. 942-952, 1992.

9. Smith, R., "Model Validation and Identification
for Systems in Hoo and h", Proceedings of the American
Control Conference, pp. 2852-2856, June 1992.

10. Willsky, A., "A Survey of Design Methods for
Failure Detection in Dynamic Systems", Automatica, Vol.
1976, pp. 601-611.

To: Pat Overstreet, Honeywell SRC, (612)951-7041
cc: Harry Kirschke, Honeywell SASSO, (813)539-5384

Charlie Poe, Honeywell SASSO, (408)756-2781
Bill Fouts, Honeywell SRC, (612)951-7034
John Weyrauch, Honeywell SRC, (612)951-7280
Jim Krause, Honeywell SRC, (612)951-7292
Lew Crouder, Lockheed Missiles and Space Co., (408)756-2781
Bui Edwards, Lockheed..Missiles and Space Co., (408)756-2781

From: Mike Elgersma, Honeywell SRC, (612)951-7208
Date: June 01, 1993
Subject: Final Report to Honeywell SASSO for Lockheed THAADS work

Contract Name: THAAD/IAP Support
Purchase Order: 23070298
Contract/Project Number: F1183

Enclosed is the final report for work done by Honeywell SRC on THAAD.

Michael R. Elgersma

0

Date: June 01, 1993

Final Report for THAAD/IAP Support Executive Summary

This final report covers work done on May 18-21, 1993 to provide an independent analysis of
a flexible missile control problem. During this time, I went to Lockheed to become familiar
with an autopilot stability issue caused by flexibility of a thin missile. I evaluated the prob-
lem and concluded that the tail mounted gyro reduced the response of the first flex mode by a
factor of ten. The extra gyro reduces a very significant flex problem to a marginal problem.
The remainder of the problem can be handled by some combination of flex filtering, passive
damping, and employing aero devices to move the c.p. back during the high dynamic pres-
sure portion of flight.

The following section gives several formulas for the unstable aero mode, the size and location
of the first flex mode, as well as an envelope for the remaining flex modes. These formulas
are useful for determining the fundamental physical tradeoffs in designing a uniform cylindri-
cally shaped missile. I would like to thank Bill Edwards, Robert Felder, Conrad Woo, John
Sesak, and Doug Discher for there help in providing me the necessary information for this
project.

Date: June 01, 1993

Final report for THAAD/IAP Technical section:

Summary

The most important parameters in the control of an unstable flexible missile are:
coaero
 = the ratio of the unstable aero frequency and the first flex mode frequency,

0),
= the ratio of the unstable aero frequency and the actuator bandwidth,

^«cuiator

—- = uncertainty in the flex mode shapes,

C, = the flex damping ratio,
£c = the controller damping ratio,

and the size of the resulting flex resonance peaks in the Bode plots.

r
i

With only one gyro mounted at the nose

Bode Plot peak =
Wfle C

With blended fore and aft gyros,

Bode Plot peak = ^2<öaero ^ j, A^_| __ 1

<0flc c ¥ '\

Rt

V^ Rt

c.p. - e.g.

cp. - e.g.

-N„
k

~N„ ■&■ 1^1(2)

E
tr

where

L = the length of the missile
R = the radius of the missile
t = the skin thickness of the missile
pm = the density of the entire missile
c.p. = the center of pressure of the missile
e.g. = the center of gravity of the missile
CNo = the aerodynamic normal coefficient = 2

Vj = flex boundary condition coefficient = 22
E = Young's Modulus of the missile skin
q = dynamic pressure
C the flex damping ratio (between .01 and .05)
Cc = the controller damping ratio (between .2 and 1)

i
V-

t

Bode Plot of Long Thin Missile System
Stabilized by a PD Controller

t« R « L

|KG|A ^M-^sta^Hfr)
Gyros

=iHllK¥Kffl ,2 Y;

(0

2g.(^»-)

Flex Dynamics

The geometry of the THAAD missile is closely approximated as a free-free uniform
annulus of length L, radius R, skin thickness t (with t « R « L), density pm, and Young's

modulus E. Only the metal skin (of thickness t « R) contributes to the stiffness, while the
entire cylinder (of thickness R) contributes to the density. As the fuel burns (uniformly along
the length of the missile), pm decreases.

The uniformity of the missile allows the use of a simple analytic formula to approximate the
frequency of the first few flex modes, (Oflev The following formula is taken from W. C.

Young, "Roark's Stress and Strain," Sixth Edition, McGraw-Hill, 1989.

L7tR2)L3

where

V! = 22.4, v2 = 61.7, v3 = 121, v4 = 200, and v5 = 299.

The damping ratio, £, is approximately .01 since there are almost no joints in the structure.

The odd mode shapes have the same displacement but opposite slope at the nose and tail.
The even mode shapes have opposite displacement but same slope at the nose and tail.

Let TC be the control torque applied at the tail (x=0) of the missile using thrust vector control

(xc = — Thrust sin(8)). Let ^(x) be the möde~sk>pe~öf mode i at thepöint x (x=0 at tail, x=L

at nose). The mode slope gives the coupling between torque inputs and the flex response, as
well as from the flex response to the angular rate measurements. The flexible body transfer
function from control torque to pitch rate (at the point x) can be approximated as:

t

e(x) , 1. Ti(x) s ¥i(0)

i s2 + 2Ctofl«.s + coflex.2 (4)

Since the missile is a uniform shape, all the mass participates in each mode, therefore ^(x) is
about size 1, i.e.

[

4^(0) = 1.0
A*F ß)

^(L) = (-iy(l + -^-)

where A*F represents the uncertainty in the match between the mode slope at the fore and aft
locations. Since the missile is nearly uniform in shape, the slopes should match to within

A\I/
10%, i.e. l-=g-l < .1 for this missile.

Rigid Body Dynamics due to Aero

The aero torque due to flying through air of density p at speed V is approximately given by:

tacro = (^pV2)(7CR2)(C.p. - C.g.) CNo (0-y) (6)

We will assume that the flight path angle y changes much slower than the vehicle pitch angle
0, and will linearize about 0 = 0 - y. Then the rigid body pitch dynamics can be approxi-
mated with the following second order system:

je = (V^pV2)(7dl2)(c.p.-c.g.)CNoe C7)

If we rewrite this as:

e = (coaero)26 (8)

then the unstable (c.p. > c.g.) aero frequency is approximately given by:

GW> = V[2
r2\,„T>2- (fcpV'XjcR'Xcp. - eg.) Cv

(9)

The moment of inertia of a uniform thin (R « L) cylinder of length L, radius R, and density
pm is approximately given by:

j^^1' (10)
12

which gives

<Öaero = V- 12(VipV2)(c.p. - eg.) Cv

PmL3

L V Pm

cp. - e.g. r

The rigid body transfer function from control torque to angular rate is:

A = (4)
*c J S -C0a

Combined Flex and Rigid Dynamics

The ratio of equations 11 and 3 gives:

coa

%, «a -*V3 i Rt
C-P- ~ c-g-

-N„ (13)

The combined rigid and flexible body transfer function from control torque to pitch rate
the point x) can be approximated as:

800 =(1)
s2 - CO,

[^(x) s ^(0)

0
2 i s2 + 2CcofleXis + ©a2 (14) I

Actuators

The THAAD actuator frequency is currently between the first and second flex modes.

G>fl«j < ©actuator < %ex2 (15)

The transfer function given in equation 14 must be modified at frequencies above the actuator
frequency. f.

i

Controller

Assume there are rate gyros at locations x^. and attitude gyros at locations x^. In order to

robustly control the unstable aero rigid body mode, the controller must have approximately
twice as much torque as the unstable aero torque.

coc
2 = 2coa (16)

A simple PD controller (with damping ratio .2 < £c < 1) would then have the form

xc = -J 2CC(0C IfCj 0(x)] + coc
2 B4 6(xagk)]

j k
(17)

where the gyros have been blended to give the correct rigid body information:

XCj=l
j

E4=i
k

At high frequency (ie co > coc) the rate term dominates the position term, so at high frequency:

xc = -J (zkcoc) ztecv1
(18)

combining equations 14 and 18 gives the loop gain of the combined controller, K(s), and
plant, G(s):

K(s)G(s) =
2Cccoc s 0^(^2^(00 8^(0)

S2 - CO. i j s2 + 2Ccoflex.s + cofl„ 2 (19)

Fore and Aft Rate Gyros

If only one gyro is used, it must be placed in the nose, since the rest of the vehicle separates
after burnout. For controlling the flexible booster, it would be better to have the rate gyro
mounted at the same location as the actuator (at the tail) since then the measurement and the
applied torque would be collocated and would remain in phase for all flex modes. This
allows the controller to remove energy by making the torque proportional to the sensed angu-
lar rate. This would ensure that all flex modes were phase stable, except for the fact that the
actuator dynamics ruin this argument above the actuator frequency. Consequenüy, it is safer
to gain stabilize the flex modes.

By blending the signals from a nose and tail gyro, the odd flex modes will nearly cancel,
since they have opposite mode slopes at the fore and aft locations. This not only stabilizes
the odd flex modes, but also reduces the ringing that would be present if we relied only on a
single collocated gryo.

If one rate gyro is placed at the nose, (xrg(= L), and the second rate gyro is placed at the

tail, (x^ = 0), then

TiCx») ¥i(0) = *Fi(L) ^i(O) = (-1)1 (1 + ^-)
¥

and

^iOW W) = ^i(O) ¥i(0) = 1

(20)
r

Since the missile is very uniform, the mode slopes are known to within 10%,

The loop gain with a fore and aft gyro is given by:

-K(s)G(s) =

AW

2 + ? S2- (Ö S2 + 2C©fleXlS + (0fle

with Ci + C2= 1.

Evaluating the above expression at the flex frequencies gives the size of the peaks:

r.

-KCJCOflexJGaCOfl^ = (-l)DCl(l + ^") +C2
Cc<Oc

e*=

(-1)nCl(l + -^) +C2
**n

(23)

If C! = 0 and C2 = 1, then the size of the flex peaks are:

iKOOfleJGQCOflejl = c ■*-waero

C<% =*»
(24)

8

If cj = .5 = C2, then the size of the odd flex peaks are:

lK(j%^)GücofleXa)l = I» ^-1 ^=2. (25)

Combining equation 13 with equations 24 and 25 gives equations 1 and 2 in the summary.

Recall that we are assuming that the controller rate term dominates the controller attitude term

by a factor of . The blending is done only on the rate gyros, so if the loop gain in

equation 25 drops below the attitude loop gain. i.e. I——I < aero, then the flex signals com-

ing through the unblended attitude loop may become larger than the rate loop.

Detuning the Blended Rate Gyros

Depending on whether A»F is positive or negative, setting q = .5 = C2 could result in either the
fore or aft gyro dominating. In order to design a flex filter to further reduce the first flex
peak, it is necessary to know the phase of the signal, therefore it is necessary to know which
gyro is dominating. It may be necessary to set q = .45 and C2 = .55 to ensure that the aft gyro
dominates. This will slightly increase the size of the first flex peak, but will ensure proper
phasing of the blended gyro signals when there is 10% uncertainty in the mode slopes.

Flex Filter Design Suggestions

The flex filters should add as little phase lag as possible. If the gain is to be rolled off uni-
formly above some frequency, then a Butterworth filter should be used to minimize phase
loss. If the flex frequencies (which increase as fuel is burned) are known well enough, then
the flex modes that are not phase stable can be notched out. A narrow notch filter introduces
less phase lag than a broadband filter.

Analyzing Actuator Nonlinearities

The actuator nonlinearity (due to the backlash, hysteresis, etc. of the EMA gearing) can be
analyzed using describing function analysis. If the gear-drive has enough friction that it is not
backdrivable, then the aero loads on the actuator can be neglected.

